Skip to main content

Plaintext-Verifiably-Checkable Encryption

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11821))

Abstract

The notion of plaintext-checkable encryption (PCE) has recently emerged in the application of search on encrypted data only by plaintexts. We observe that existing PCE schemes are not sufficient to guarantee check correctness in the case of a malicious encryptor. To address this concern, we put forth the concept of plaintext-verifiably-checkable encryption (PVCE), which captures the basic requirement of output correctness: If M is thought to be the plaintext for a ciphertext \(\textsf {ct}\) by the Check algorithm, \(\textsf {ct}\) is actually a valid encryption of M. In other words, it does not exist any maliciously generated ciphertext could succeed in plaintext checking. This property guarantees a meaningful notion of correctness and is crucial in several applications. We propose a PVCE construction using pairing-friendly smooth projective hash function with modified language representation and prove it to be unlink-cca security in the standard model. This is the first verifiable plaintext-checkable encryption that provides both verifiable checkability and the most desirable security in the standard model. To this end, we show a PVCE instantiation from k-MDDH assumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_30

    Chapter  Google Scholar 

  2. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6_7

    Chapter  Google Scholar 

  3. Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords based on jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77026-8_21

    Chapter  Google Scholar 

  4. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_39

    Chapter  Google Scholar 

  5. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable public-key encryption scheme with a designated tester. J. Syst. Softw. 83, 763–771 (2010)

    Article  Google Scholar 

  6. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_9

    Chapter  Google Scholar 

  7. Tang, Q.: Public key encryption schemes supporting equality test with authorization of different granularity. Int. J. Appl. Cryptogr. 2(4), 304–321 (2012)

    Article  MathSciNet  Google Scholar 

  8. Tang, Q.: Public key encryption supporting plaintext equality test and user-specified authorization. Secur. Commun. Netw. 5(12), 1351–1362 (2012)

    Article  Google Scholar 

  9. Huang, K., Tso, R., Chen, Y., Rahman, S., Almogren, A., Alamri, A.: PKE-AET: public key encryption with authorized equality test. Comput. J. 58(10), 2686–2697 (2015)

    Article  Google Scholar 

  10. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur. 10(3), 458–470 (2015)

    Article  Google Scholar 

  11. Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-checkable encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 332–348. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_21

    Chapter  Google Scholar 

  12. Ma, S., Mu, Y., Susilo, W.: A generic scheme of plaintext-checkable database encryption. Inf. Sci. 429, 88–101 (2018)

    Article  MathSciNet  Google Scholar 

  13. Carbunar, B., Sion, R.: Toward private joins on outsourced data. IEEE Trans. Knowl. Data Eng. 24(9), 1699–1710 (2012)

    Article  Google Scholar 

  14. Furukawa, J., Isshiki, T.: Controlled joining on encrypted relational database. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 46–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_4

    Chapter  Google Scholar 

  15. Hweehwa, P., Xuhua, D.: Privacy-preserving ad-hoc equi-join on outsourced data. ACM Trans. Database Syst. (TODS) 39(3), 23:1–23:40 (2014)

    MathSciNet  Google Scholar 

  16. Ma, S.: Authorized equi-join for multiple data contributors in the PKC-based setting. Comput. J. 60(12), 1822–1838 (2017)

    Article  MathSciNet  Google Scholar 

  17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  18. Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 339–369. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_12

    Chapter  Google Scholar 

  19. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_25

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China (No. 61872409, 61872152), Pearl River Nova Program of Guangzhou (No. 201610010037), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2014A030306021) and Guangdong Program for Special Support of Topnotch Young Professionals (No. 2015TQ01X796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, S., Huang, Q., Li, X., Xiao, M. (2019). Plaintext-Verifiably-Checkable Encryption. In: Steinfeld, R., Yuen, T. (eds) Provable Security. ProvSec 2019. Lecture Notes in Computer Science(), vol 11821. Springer, Cham. https://doi.org/10.1007/978-3-030-31919-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31919-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31918-2

  • Online ISBN: 978-3-030-31919-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics