Advertisement

The Whole Picture: From Isolated to Global MRI Measures of Neurovascular and Neurodegenerative Disease

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1205)

Abstract

Structural magnetic resonance imaging (MRI) has been used to characterise the appearance of the brain in cerebral small vessel disease (SVD), ischaemic stroke, cognitive impairment, and dementia. SVD is a major cause of stroke and dementia; features of SVD include white matter hyperintensities (WMH) of presumed vascular origin, lacunes of presumed vascular origin, microbleeds, and perivascular spaces. Cognitive impairment and dementia have traditionally been stratified into subtypes of varying origin, e.g., vascular dementia versus dementia of the Alzheimer’s type (Alzheimer’s disease; AD). Vascular dementia is caused by reduced blood flow in the brain, often as a result of SVD, and AD is thought to have its genesis in the accumulation of tau and amyloid-beta leading to brain atrophy. But after early seminal studies in the 1990s found neurovascular disease features in around 30% of AD patients, it is becoming recognised that so-called “mixed pathologies” (of vascular and neurodegenerative origin) exist in many more patients diagnosed with stroke, only one type of dementia, or cognitive impairment. On the back of these discoveries, attempts have recently been made to quantify the full extent of degenerative and vascular disease in the brain in vivo on MRI. The hope being that these “global” methods may one day lead to better diagnoses of disease and provide more sensitive measurements to detect treatment effects in clinical trials. Indeed, the “Total MRI burden of cerebral small vessel disease”, the “Brain Health Index” (BHI), and “MRI measure of degenerative and cerebrovascular pathology in Alzheimer disease” have all been shown to have stronger associations with clinical and cognitive phenotypes than individual brain MRI features. This chapter will review individual structural brain MRI features commonly seen in SVD, stroke, and dementia. The relationship between these features and differing clinical and cognitive phenotypes will be discussed along with developments in their measurement and quantification. The chapter will go on to review emerging methods for quantifying the collective burden of structural brain MRI findings and how these “whole picture” methods may lead to better diagnoses of neurovascular and neurodegenerative disorders.

Keywords

Brain MRI Neurodegeneration Neurovascular disease Stroke Dementia 

Notes

Acknowledgements

David Alexander Dickie is funded by a Stroke Association Postdoctoral Fellowship and would like to thank the Stroke Association very much for their fantastic support.

References

  1. Akoudad S, Wolters FJ, Viswanathan A et al (2016) Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol.  https://doi.org/10.1001/jamaneurol.2016.1017CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ali M, Philip MWB, Curram J et al (2007) The Virtual International Stroke Trials Archive. Stroke 38:1905–1910.  https://doi.org/10.1161/STROKEAHA.106.473579CrossRefPubMedGoogle Scholar
  3. Aribisala BS, Valdés Hernández MC, Royle NA et al (2012) Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936. Eur Radiol.  https://doi.org/10.1007/s00330-012-2677-x.  https://doi.org/10.1007/s00330-012-2677-x
  4. Aronson MK, Ooi WL, Geva DL et al (1991) Dementia: age-dependent incidence, prevalence, and mortality in the old old. Arch Intern Med 151:989–992.  https://doi.org/10.1001/archinte.1991.00400050129024CrossRefPubMedGoogle Scholar
  5. Bakker ENTP, Bacskai BJ, Arbel-Ornath M et al (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194.  https://doi.org/10.1007/s10571-015-0273-8CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ballerini L, Lovreglio R, Valdés Hernández MDC et al (2018) Perivascular spaces segmentation in brain MRI using optimal 3D filtering. Sci Rep 8:2132.  https://doi.org/10.1038/s41598-018-19781-5
  7. Banerjee G, Wilson D, Jäger HR, Werring DJ (2016) Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta - Mol Basis Dis 1862:926–938.  https://doi.org/10.1016/J.BBADIS.2015.12.010CrossRefGoogle Scholar
  8. Bath PM, Wardlaw JM (2015) Pharmacological treatment and prevention of cerebral small vessel disease: a review of potential interventions. Int J Stroke 10:469–478.  https://doi.org/10.1111/ijs.12466CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bennett DA (2018) An MRI biomarker of mixed pathology. Neurology 91:682 LP–683.  https://doi.org/10.1212/wnl.0000000000006305PubMedCrossRefGoogle Scholar
  10. Bloch F (1946) Nuclear induction. Phys Rev 70:460–474CrossRefGoogle Scholar
  11. Bos D, Wolters FJ, Darweesh SKL et al (2018) Cerebral small vessel disease and the risk of dementia: a systematic review and meta-analysis of population-based evidence. Alzheimer’s Dement 14:1482–1492.  https://doi.org/10.1016/J.JALZ.2018.04.007CrossRefGoogle Scholar
  12. Bowles C, Qin C, Guerrero R et al (2017) Brain lesion segmentation through image synthesis and outlier detection. NeuroImage Clin 16:643–658.  https://doi.org/10.1016/J.NICL.2017.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brickman AM, Tosto G, Gutierrez J et al (2018) An MRI measure of degenerative and cerebrovascular pathology in Alzheimer disease. NeurologyGoogle Scholar
  14. Buckner RL, Sepulcre J, Talukdar T et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860 LP–1873.  https://doi.org/10.1523/jneurosci.5062-08.2009PubMedCrossRefGoogle Scholar
  15. Caligiuri ME, Perrotta P, Augimeri A et al (2015) Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review. Neuroinformatics 13Google Scholar
  16. Cash DM, Rohrer JD, Ryan NS et al (2014) Imaging endpoints for clinical trials in Alzheimer’s disease. Alzheimers Res Ther 6:87.  https://doi.org/10.1186/s13195-014-0087-9CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chalela JA, Kidwell CS, Nentwich LM et al (2007) Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369:293–298.  https://doi.org/10.1016/S0140-6736(07)60151-2CrossRefPubMedPubMedCentralGoogle Scholar
  18. Charlotte C, Potter GM, Jackson AC et al (2009) Improving interrater agreement about brain microbleeds. Stroke 40:94–99.  https://doi.org/10.1161/strokeaha.108.526996PubMedCrossRefGoogle Scholar
  19. Coe R (2002) It’s the effect size, stupid: what effect size is and why it is important. Annu Conf Br Educ Res AssocGoogle Scholar
  20. Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682PubMedCrossRefGoogle Scholar
  21. Dawson J, Broomfield N, Dani K et al (2018) Xanthine oxidase inhibition for the improvement of long-term outcomes following ischaemic stroke and transient ischaemic attack (XILO-FIST)—protocol for a randomised double blind placebo-controlled clinical trial. Eur Stroke J 2396987318771426.  https://doi.org/10.1177/2396987318771426PubMedPubMedCentralCrossRefGoogle Scholar
  22. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dickie DA, Job DE, Poole I et al (2012) Do brain image databanks support understanding of normal ageing brain structure? A systematic review. Eur Radiol 22:1385–1394.  https://doi.org/10.1007/s00330-012-2392-7CrossRefPubMedGoogle Scholar
  24. Dickie DA, Job DE, Gonzalez DR et al (2013) Variance in brain volume with advancing age: implications for defining the limits of normality. PLoS ONE 8:e84093PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dickie DA, Job DE, Gonzalez DR et al (2015a) Use of brain MRI atlases to determine boundaries of age-related pathology: the importance of statistical method. PLoS ONE 10:e0127939.  https://doi.org/10.1371/journal.pone.0127939CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dickie DA, Mikhael S, Job DE et al (2015b) Permutation and parametric tests for effect sizes in voxel-based morphometry of gray matter volume in brain structural MRI. Magn Reson Imaging 33:1299–1305.  https://doi.org/10.1016/j.mri.2015.07.014CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dickie DA, Karama S, Ritchie SJ et al (2016a) Progression of white matter disease and cortical thinning are not related in older community-dwelling subjects. Stroke 47:410–416.  https://doi.org/10.1161/strokeaha.115.011229CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dickie DA, Ritchie SJ, Cox SR et al (2016b) Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936. Neurobiol Aging 42:116–123.  https://doi.org/10.1016/j.neurobiolaging.2016.03.011CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dickie DA, Aribisala B, Mair G et al (2017a) Blood pressure variability and leukoaraiosis in acute ischemic stroke. Int J Stroke 1747493017729267.  https://doi.org/10.1177/1747493017729267PubMedCrossRefGoogle Scholar
  30. Dickie DA, Shenkin SD, Anblagan D et al (2017b) Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging. Front Neuroinform 11:1PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dickie DA, Valdés Hernández MDC, Makin SD et al (2018) The brain health index: towards a combined measure of neurovascular and neurodegenerative structural brain injury. Int J Stroke 1747493018770222.  https://doi.org/10.1177/1747493018770222PubMedCrossRefGoogle Scholar
  32. Dickie DA, Gardner K, Wagener A et al (2019) Cortical thickness, white matter hyperintensities, and cognition after stroke. Int J StrokeGoogle Scholar
  33. Douaud G, Refsum H, de Jager CA et al (2013) Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci 110:9523 LP–9528.  https://doi.org/10.1073/pnas.1301816110CrossRefGoogle Scholar
  34. Dubost F, Yilmaz P, Adams H et al (2019) Enlarged perivascular spaces in brain MRI: automated quantification in four regions. Neuroimage 185:534–544.  https://doi.org/10.1016/J.NEUROIMAGE.2018.10.026CrossRefPubMedGoogle Scholar
  35. Ducharme S, Albaugh MD, Nguyen T-V et al (2016) Trajectories of cortical thickness maturation in normal brain development—the importance of quality control procedures. Neuroimage 125:267–279.  https://doi.org/10.1016/j.neuroimage.2015.10.010CrossRefPubMedGoogle Scholar
  36. Dufouil C, Chalmers J, Coskun O et al (2005) Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke. Circulation 112:1644–1650.  https://doi.org/10.1161/CIRCULATIONAHA.104.501163CrossRefPubMedGoogle Scholar
  37. Duning T, Kloska S, Steinsträter O et al (2005) Dehydration confounds the assessment of brain atrophy. Neurology 64:548 LP–550.  https://doi.org/10.1212/01.wnl.0000150542.16969.ccPubMedCrossRefPubMedCentralGoogle Scholar
  38. Farrell C, Chappell F, Armitage PA et al (2009) Development and initial testing of normal reference MR images for the brain at ages 65–70 and 75–80 years. Eur Radiol 19:177–183PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol 149:351–356.  https://doi.org/10.2214/ajr.149.2.351CrossRefGoogle Scholar
  40. Fazekas F, Kleinert R, Roob G et al (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol 20:637 LP–642Google Scholar
  41. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355PubMedCrossRefGoogle Scholar
  42. Fisher C (1982) Lacunar strokes and infarcts: a review. Neurology 32:871–876PubMedCrossRefGoogle Scholar
  43. Fotenos AF, Snyder AZ, Girton LE et al (2005) Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64:1032–1039PubMedCrossRefGoogle Scholar
  44. Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363:392–394PubMedCrossRefGoogle Scholar
  45. Frey BM, Petersen M, Mayer C et al (2019) Characterization of white matter hyperintensities in large-scale MRI-studies. Front Neurol 10:238PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fu J, Lu C, Hong Z et al (2005) Extent of white matter lesions is related to acute subcortical infarcts and predicts further stroke risk in patients with first ever ischaemic stroke. J Neurol Neurosurg Psychiatry 76:793–796.  https://doi.org/10.1136/jnnp.2003.032771CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gauthier L, Gauthier S (1990) Assessment of functional changes in Alzheimer’s disease. Neuroepidemiology 9:183–188.  https://doi.org/10.1159/000110771CrossRefPubMedGoogle Scholar
  48. Ghafoorian M et al (2017) Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage Clin 14:391–399CrossRefGoogle Scholar
  49. Godin O, Maillard P, Crivello F et al (2009) Association of white-matter lesions with brain atrophy markers: the three-city Dijon MRI study. Cerebrovasc Dis 28:177–184PubMedCrossRefGoogle Scholar
  50. Gorelick PB, Farooq MU (2016) Cerebral microbleeds, cognition, and therapeutic implications. JAMA Neurol.  https://doi.org/10.1001/jamaneurol.2016.1388CrossRefPubMedPubMedCentralGoogle Scholar
  51. Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174.  https://doi.org/10.1016/S1474-4422(09)70013-4CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gregoire SM, Chaudhary UJ, Brown MM et al (2009) The microbleed anatomical rating scale (MARS). Neurology 73:1759 LP–1766.  https://doi.org/10.1212/wnl.0b013e3181c34a7dPubMedCrossRefGoogle Scholar
  53. Hammers A, Allom R, Koepp MJ et al (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19:224–247PubMedCrossRefGoogle Scholar
  54. Hervé D et al (2009) Three-dimensional MRI analysis of individual volume of lacunes in CADASIL. Stroke 40:124–128PubMedCrossRefGoogle Scholar
  55. Hilal S, Tan CS, Adams HHH et al (2018) Enlarged perivascular spaces and cognition. Neurology 91:e832 LP–e842.  https://doi.org/10.1212/wnl.0000000000006079PubMedPubMedCentralCrossRefGoogle Scholar
  56. Holland GN, Hawkes RC, Moore WS (1980) Nuclear magnetic resonance (NMR) tomography of the brain: coronal and sagittal sections. J Comput Assist Tomogr 4:429–433PubMedCrossRefGoogle Scholar
  57. Huijts M, Duits A, Van Oostenbrugge RJ et al (2013) Accumulation of MRI markers of cerebral small vessel disease is associated with decreased cognitive function. A study in first-ever lacunar stroke and hypertensive patients. Front Aging Neurosci 5.  https://doi.org/10.3389/fnagi.2013.00072
  58. Jack CR Jr, Bernstein MA, Fox NC et al (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jack CR, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement 14:535–562.  https://doi.org/10.1016/J.JALZ.2018.02.018CrossRefGoogle Scholar
  60. James BD, Bennett DA, Wilson RS et al (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139:2983–2993.  https://doi.org/10.1093/brain/aww224CrossRefPubMedPubMedCentralGoogle Scholar
  61. Jellinger KA, Attems J (2015) Challenges of multimorbidity of the aging brain: a critical update. J Neural Transm 122:505–521.  https://doi.org/10.1007/s00702-014-1288-xCrossRefPubMedGoogle Scholar
  62. Job DE, Dickie DA, Rodriguez D et al (2016) A brain imaging repository of normal structural MRI across the life course: brain images of normal subjects (BRAINS). Neuroimage.  https://doi.org/10.1016/j.neuroimage.2016.01.027CrossRefPubMedGoogle Scholar
  63. Jokinen H, Gouw AA, Madureira S et al (2011) Incident lacunes influence cognitive decline. Neurology 76:1872 LP–1878.  https://doi.org/10.1212/wnl.0b013e31821d752fPubMedCrossRefGoogle Scholar
  64. Kapeller P, Barber R, Vermeulen RJ et al (2003) Visual rating of age-related white matter changes on magnetic resonance imaging. Stroke 34:441–445.  https://doi.org/10.1161/01.STR.0000049766.26453.E9CrossRefPubMedGoogle Scholar
  65. Klarenbeek P, van Oostenbrugge RJ, Rouhl RPW et al (2013) Ambulatory blood pressure in patients with lacunar stroke: association with total MRI burden of cerebral small vessel disease. Stroke 44:2995–2999.  https://doi.org/10.1161/strokeaha.113.002545CrossRefPubMedGoogle Scholar
  66. Knopman DS, Griswold ME, Lirette ST et al (2015) Vascular imaging abnormalities and cognition: mediation by cortical volume in nondemented individuals: atherosclerosis risk in communities-neurocognitive study. Stroke 46:433–440.  https://doi.org/10.1161/strokeaha.114.007847CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kuijf HJ, Biesbroek JM, de Bresser J et al (2019) Standardized assessment of automatic segmentation of white matter hyperintensities; results of the WMH segmentation challenge. IEEE Trans Med Imaging 1.  https://doi.org/10.1109/tmi.2019.2905770PubMedCrossRefGoogle Scholar
  68. Kwee RM, Kwee TC (2007) Virchow-Robin spaces at MR imaging. RadioGraphics 27:1071–1086.  https://doi.org/10.1148/rg.274065722CrossRefPubMedGoogle Scholar
  69. Lambert C, Zeestraten E, Barrick TR et al (2016) Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease. Brain 139:1136–1151.  https://doi.org/10.1093/brain/aww009CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191CrossRefGoogle Scholar
  71. Lewis GJ, Dickie DA, Cox SR et al (2018) Widespread associations between trait conscientiousness and thickness of brain cortical regions. Neuroimage 176:22–28.  https://doi.org/10.1016/J.NEUROIMAGE.2018.04.033CrossRefPubMedPubMedCentralGoogle Scholar
  72. MacLullich AMJ, Wardlaw JM, Ferguson KJ et al (2004) Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry 75:1519–1523.  https://doi.org/10.1136/jnnp.2003.030858CrossRefPubMedPubMedCentralGoogle Scholar
  73. Mansfield P, Maudsley AA (1977) Medical imaging by NMR. Br J Radiol 50:188–194.  https://doi.org/10.1259/0007-1285-50-591-188CrossRefPubMedGoogle Scholar
  74. Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29:355–373Google Scholar
  75. Marshall I, Thrippleton MJ, Bastin ME et al (2018) Characterisation of tissue-type metabolic content in secondary progressive multiple sclerosis: a magnetic resonance spectroscopic imaging study. J Neurol 265:1795–1802.  https://doi.org/10.1007/s00415-018-8903-yCrossRefPubMedPubMedCentralGoogle Scholar
  76. Maurer K, Volk S, Gerbaldo H (1997) Auguste D and Alzheimer’s disease. Lancet 349:1546–1549.  https://doi.org/10.1016/S0140-6736(96)10203-8CrossRefPubMedGoogle Scholar
  77. McGraw KO, Wong SP (1992) A common language effect size statistic. Psychol Bull 111:361–365CrossRefGoogle Scholar
  78. Miller KL, Alfaro-Almagro F, Bangerter NK et al (2016) Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci.  https://doi.org/10.1038/nn.4393. http://www.nature.com/neuro/journal/vaop/ncurrent/abs/nn.4393.html#supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  79. Morrison MA, Payabvash S, Chen Y et al (2018) A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: evaluating vascular injury and data labelling for machine learning. NeuroImage Clin 20:498–505.  https://doi.org/10.1016/J.NICL.2018.08.002CrossRefPubMedPubMedCentralGoogle Scholar
  80. O’Donnell MJ, Chin SL, Rangarajan S et al (2016) Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet 388:761–775.  https://doi.org/10.1016/S0140-6736(16)30506-2CrossRefPubMedGoogle Scholar
  81. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701.  https://doi.org/10.1016/S1474-4422(10)70104-6CrossRefPubMedGoogle Scholar
  82. Patankar TF, Mitra D, Varma A et al (2005) Dilatation of the Virchow-Robin space is a sensitive indicator of cerebral microvascular disease: study in elderly patients with dementia. Am J Neuroradiol 26:1512 LP–1520Google Scholar
  83. Pearce LA, McClure LA, Anderson DC et al (2014) Effects of long-term blood pressure lowering and dual antiplatelet treatment on cognitive function in patients with recent lacunar stroke: a secondary analysis from the SPS3 randomised trial. Lancet Neurol 13:1177–1185.  https://doi.org/10.1016/S1474-4422(14)70224-8CrossRefPubMedPubMedCentralGoogle Scholar
  84. Petrovitch H, Ross GW, Steinhorn SC et al (2005) AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 57:98–103.  https://doi.org/10.1002/ana.20318CrossRefPubMedGoogle Scholar
  85. Potter GM, Doubal FN, Jackson CA et al (2010) Counting cavitating lacunes underestimates the burden of lacunar infarction. Stroke 41:267–272.  https://doi.org/10.1161/STROKEAHA.109.566307CrossRefPubMedGoogle Scholar
  86. Potter GM, Marlborough FJ, Wardlaw JM (2011) Wide variation in definition, detection, and description of lacunar lesions on imaging. Stroke 42:359–366.  https://doi.org/10.1161/strokeaha.110.594754CrossRefPubMedGoogle Scholar
  87. Raji CA, Lopez OL, Kuller LH et al (2012) White matter lesions and brain gray matter volume in cognitively normal elders. Neurobiol Aging 33:834.e7–834.e16.  https://doi.org/10.1016/j.neurobiolaging.2011.08.010CrossRefGoogle Scholar
  88. Reisberg B, Borenstein J, Salob SP et al (1987) Behavioral symptoms in Alzheimer’s disease: phenomenology and treatment. J Clin Psychiatry 48:9–15PubMedGoogle Scholar
  89. Riitta M, Timo E, Oili S et al (1997) Variable agreement between visual rating scales for white matter hyperintensities on MRI. Stroke 28:1614–1623.  https://doi.org/10.1161/01.STR.28.8.1614CrossRefGoogle Scholar
  90. Ritchie SJ, Dickie DA, Cox SR et al (2015) Brain volumetric changes and cognitive ageing during the eighth decade of life. Hum Brain Mapp 36:4910–4925.  https://doi.org/10.1002/hbm.22959CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ritchie SJ, Dickie DA, Cox SR et al (2018) Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiol Aging 62:146–158.  https://doi.org/10.1016/J.NEUROBIOLAGING.2017.10.005CrossRefPubMedPubMedCentralGoogle Scholar
  92. Robin C (1859) Recherches sur quelques particularites de la structure des capillaires de l’encephale. J Physiol Homme Anim 2:537–548Google Scholar
  93. Rockwood K, Song X, MacKnight C et al (2005) A global clinical measure of fitness and frailty in elderly people. Can Med Assoc J 173:489 LP–495.  https://doi.org/10.1503/cmaj.050051PubMedCrossRefGoogle Scholar
  94. Rossi R, Boccardi M, Sabattoli F et al (2006) Topographic correspondence between white matter hyperintensities and brain atrophy. J Neurol 253:919–927.  https://doi.org/10.1007/s00415-006-0133-zCrossRefPubMedGoogle Scholar
  95. Scheltens P, Barkhof F, Leys D et al (1993) A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 114:7–12.  https://doi.org/10.1016/0022-510X(93)90041-VCrossRefPubMedGoogle Scholar
  96. Scheltens P, Blennow K, Breteler MMB et al (2016) Alzheimer’s disease. Lancet 388:505–517.  https://doi.org/10.1016/S0140-6736(15)01124-1CrossRefPubMedGoogle Scholar
  97. Schneider JA, Aggarwal NT, Barnes L et al (2009) The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis 18:691–701.  https://doi.org/10.3233/JAD-2009-1227CrossRefPubMedPubMedCentralGoogle Scholar
  98. Seghier ML, Kolanko MA, Leff AP et al (2011) Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images. PLoS ONE 6:e17547–e17547.  https://doi.org/10.1371/journal.pone.0017547CrossRefPubMedPubMedCentralGoogle Scholar
  99. Selkoe DJ (2013) The therapeutics of Alzheimer’s disease: where we stand and where we are heading. Ann Neurol 74:328–336.  https://doi.org/10.1002/ana.24001CrossRefPubMedGoogle Scholar
  100. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595 LP–608.  https://doi.org/10.15252/emmm.201606210PubMedPubMedCentralCrossRefGoogle Scholar
  101. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189–a006189.  https://doi.org/10.1101/cshperspect.a006189CrossRefPubMedPubMedCentralGoogle Scholar
  102. Shi Y, Wardlaw JM (2016) Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol.  https://doi.org/10.1136/svn-2016-000035CrossRefPubMedPubMedCentralGoogle Scholar
  103. Snowdon DA, Greiner LH, Mortimer JA et al (1997) Brain infarction and the clinical expression of Alzheimer disease: the Nun study. JAMA 277:813–817.  https://doi.org/10.1001/jama.1997.03540340047031CrossRefPubMedGoogle Scholar
  104. Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement 7:280–292.  https://doi.org/10.1016/J.JALZ.2011.03.003CrossRefGoogle Scholar
  105. Staals J, Makin SDJ, Doubal FN et al (2014) Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 83:1228–1234.  https://doi.org/10.1212/wnl.0000000000000837CrossRefPubMedPubMedCentralGoogle Scholar
  106. Staals J, Booth T, Morris Z et al (2015) Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiol Aging 36:2806–2811.  https://doi.org/10.1016/j.neurobiolaging.2015.06.024CrossRefPubMedPubMedCentralGoogle Scholar
  107. The IST-3 Collaborative Group (2015) Association between brain imaging signs, early and late outcomes, and response to intravenous alteplase after acute ischaemic stroke in the third International Stroke Trial (IST-3): secondary analysis of a randomised controlled trial. Lancet Neurol 14:485–496.  https://doi.org/10.1016/s1474-4422(15)00012-5
  108. Thompson PM, Hayashi KM, de Zubicaray GI et al (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23:994–1005PubMedPubMedCentralCrossRefGoogle Scholar
  109. Thompson P, Stein J, Medland S et al (2014) The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 8:153–182.  https://doi.org/10.1007/s11682-013-9269-5CrossRefPubMedPubMedCentralGoogle Scholar
  110. Trinh N-H, Hoblyn J, Mohanty S, Yaffe K (2003) Efficacy of cholinesterase inhibitors in the treatment of neuropsychiatric symptoms and functional impairment in Alzheimer disease A meta-analysis. JAMA 289:210–216.  https://doi.org/10.1001/jama.289.2.210CrossRefPubMedGoogle Scholar
  111. Tuladhar AM, Reid AT, Shumskaya E et al (2015) Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke 46:425–432.  https://doi.org/10.1161/strokeaha.114.007146CrossRefPubMedGoogle Scholar
  112. Tustison NJ, Cook PA, Klein A et al (2014) Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99:166–179.  https://doi.org/10.1016/j.neuroimage.2014.05.044CrossRefPubMedGoogle Scholar
  113. van Charante EPM, Richard E, Eurelings LS et al (2016) Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): a cluster-randomised controlled trial. Lancet 388:797–805.  https://doi.org/10.1016/S0140-6736(16)30950-3CrossRefGoogle Scholar
  114. van Es A, van der Grond J, de Craen AJM et al (2011) Cerebral microbleeds and cognitive functioning in the PROSPER study. Neurology 77:1446–1452PubMedCrossRefGoogle Scholar
  115. van Straaten ECW, Fazekas F, Rostrup E et al (2006) Impact of white matter hyperintensities scoring method on correlations with clinical data. Stroke 37:836–840.  https://doi.org/10.1161/01.STR.0000202585.26325.74CrossRefPubMedGoogle Scholar
  116. Vermeer SE, Prins ND, den Heijer T et al (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348:1215–1222.  https://doi.org/10.1056/NEJMoa022066CrossRefPubMedGoogle Scholar
  117. Vermeer SE, Longstreth WT, Koudstaal PJ (2007) Silent brain infarcts: a systematic review. Lancet Neurol 6:611–619.  https://doi.org/10.1016/S1474-4422(07)70170-9CrossRefPubMedGoogle Scholar
  118. Vernooij MW, van der Lugt A, Ikram MA et al (2008) Prevalence and risk factors of cerebral microbleeds: the Rotterdam scan study. Neurology 70:1208–1214.  https://doi.org/10.1212/01.wnl.0000307750.41970.d9CrossRefPubMedGoogle Scholar
  119. Virchow R (1851) Ueber die Erweiterung kleinerer Gefäfse. Arch für Pathol Anat und Physiol und für Klin Med 3:427–462.  https://doi.org/10.1007/BF01960918CrossRefGoogle Scholar
  120. von Kummer R, Dzialowski I (2007) Should MRI replace CT for the routine evaluation of acute stroke? Nat Clin Pract Neurol 3:428CrossRefGoogle Scholar
  121. Wardlaw JM (2007) Should all patients with suspected stroke have brain MRI instead of CT? Nat Rev Cardiol 4:362CrossRefGoogle Scholar
  122. Wardlaw JM (2008) What is a lacune? Stroke 39:2921–2922.  https://doi.org/10.1161/STROKEAHA.108.523795CrossRefPubMedGoogle Scholar
  123. Wardlaw JM, Smith EE, Biessels GJ et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:822–838.  https://doi.org/10.1016/S1474-4422(13)70124-8CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wardlaw JM, Allerhand M, Doubal FN et al (2014) Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology 82:1331–1338PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S (2015) What are white matter hyperintensities made of?: Relevance to vascular cognitive impairment. J Am Hear Assoc 4.  https://doi.org/10.1161/jaha.114.001140
  126. Weber R, Weimar C, Blatchford J et al (2012) Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the prevention regimen for effectively avoiding second strokes (PRoFESS) MRI substudy. Stroke 43:2336–2342PubMedCrossRefGoogle Scholar
  127. Weller RO, Subash M, Preston SD et al (2008) Perivascular drainage of amyloid-β peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266.  https://doi.org/10.1111/j.1750-3639.2008.00133.xCrossRefPubMedGoogle Scholar
  128. Wen W, Sachdev PS, Chen X, Anstey K (2006) Gray matter reduction is correlated with white matter hyperintensity volume: a voxel-based morphometric study in a large epidemiological sample. Neuroimage 29:1031–1039PubMedCrossRefGoogle Scholar
  129. Winblad B, Amouyel P, Andrieu S et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532.  https://doi.org/10.1016/S1474-4422(16)00062-4CrossRefPubMedGoogle Scholar
  130. Wyss A, Dawson J, Arba F et al (2019) Combining neurovascular and neurodegenerative MRI measures in stroke. StrokeGoogle Scholar
  131. Zhu Y-C, Tzourio C, Soumaré A et al (2010) Severity of Dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease. Stroke 41:2483–2490.  https://doi.org/10.1161/STROKEAHA.110.591586CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Cardiovascular and Medical SciencesUniversity of Glasgow, Queen Elizabeth University HospitalGlasgowUK

Personalised recommendations