Skip to main content

Deep Learning vs. Classical Machine Learning: A Comparison of Methods for Fluid Intelligence Prediction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11791))

Abstract

Predicting fluid intelligence based on T1-weighted magnetic resonance imaging (MRI) scans poses several challenges, including developing an adequate data representation of three dimensional voxel data, extracting predictive information from this data representation, and devising a model that is able to leverage the predictive information. We evaluate two strategies for prediction of fluid intelligence given structural MRI scans acquired through the Adolescent Brain Cognitive Development (ABCD) Study: deep learning models trained on raw imagery and classical machine learning models trained on extracted features. Our best-performing solution consists of a classical machine learning model trained on a combination of provided brain volume estimates and extracted features. Specifically, a Gradient Boosting Regressor (GBR) trained on a PCA-reduced feature space produced the best performance (train MSE = 66.29, validation MSE = 70.16), surpassing regression models trained on the provided volume data alone, and 2D/3D Convolutional Neural Networks trained on various representations of imagery data. Nonetheless, these results remain slightly better than a mean prediction, suggesting that neither approach is capturing a high degree of variance in the data.

L. Guerdan and P. Sun—denotes equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 13(4), 534–546 (2001)

    Google Scholar 

  2. Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proc. Nat. Acad. Sci. 98(2), 676–682 (2001)

    Article  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

    Article  Google Scholar 

  4. Hazlett, H.C., et al.: Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641), 348 (2017)

    Article  Google Scholar 

  5. Hosseini-Asl, E., Keynton, R., El-Baz, A.: Alzheimer’s disease diagnostics by adaptation of 3D convolutional network. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 126–130. IEEE, September 2016

    Google Scholar 

  6. Morales, D.A., et al.: Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Res. NeuroImaging 213(2), 92–98 (2013)

    Article  Google Scholar 

  7. Stankov, L.: Complexity, metacognition, and fluid intelligence. Intelligence 28(2), 121–143 (2000)

    Article  Google Scholar 

  8. Sun, P., et al.: Ada-automatic detection of alcohol usage for mobile ambulatory assessment. In: 2016 IEEE International Conference on Smart Computing (SMARTCOMP). IEEE (2016)

    Google Scholar 

  9. Lee, K.H., et al.: Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. Neuroimage 29(2), 578–586 (2006)

    Article  Google Scholar 

  10. Haier, R.J., Jung, R.E., Yeo, R.A., Head, K., Alkire, M.T.: Structural brain variation and general intelligence. Neuroimage 23(1), 425–433 (2004)

    Article  Google Scholar 

  11. Liu, Y., et al.: Performance comparison of deep learning techniques for recognizing birds in aerial images. In: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). IEEE (2018)

    Google Scholar 

  12. Ismail, M., et al.: Shape features of the lesion habitat to differentiate brain tumor progression from pseudoprogression on routine multiparametric MRI: a multisite study. Am. J. Neuroradiol. 39(12), 2187–2193 (2018)

    Article  Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Kim, Y.: Insight segmentation and registration toolkit. The National Library of Medicine, Washington, DC (2001)

    Google Scholar 

  15. Chen, G., Sun, P., Shang, Y.: Automatic fish classification system using deep learning. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 24–29. IEEE, November 2017

    Google Scholar 

  16. Kushibar, K., et al.: Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Med. Image Anal. 48, 177–186 (2018)

    Article  Google Scholar 

  17. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2017)

    Article  Google Scholar 

  18. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Guerdan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerdan, L. et al. (2019). Deep Learning vs. Classical Machine Learning: A Comparison of Methods for Fluid Intelligence Prediction. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics