Skip to main content

Wavelet Transforms: From Classical to New Generation Wavelets

  • Chapter
  • First Online:

Abstract

Wavelet transforms have become an important mathematical tool that has been widely explored for visual information processing. The wide range of wavelet transforms and their multiresolution analysis facilitate to solve complex problems ranging from simple to complex image and vision based problems. The present chapter aims to provide an overview of existing wavelet transforms ranging from classical to new generation wavelets. This chapter discusses the basics of the discrete wavelet transform (DWT) followed by new generation wavelet transforms and highlights their useful characteristics. Other than DWT, the present chapter provides a brief review on dual tree complex wavelet transform (DTCWT), curvelet transform (CVT), contourlet transform (CT), contourlet transform (CNT), nonsubsampled contourlet transform (NSCT) to provide fundamentals and understanding of the wavelet transforms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mallat S (1996) Wavelets for a vision. Proc IEEE 84(4):604–614

    Article  Google Scholar 

  2. Mallat SG (1988) Multiresolution representations and wavelets.

    Google Scholar 

  3. Mallat SG (1990) Multiresolution approach to wavelets in computer vision. In: Wavelets. Springer, Berlin/Heidelberg, pp 313–327

    Chapter  Google Scholar 

  4. Daubechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005

    Article  MathSciNet  MATH  Google Scholar 

  5. Sifuzzaman M, Islam MR, Ali MZ (2009) Application of wavelet transform and its advantages compared to Fourier transform.

    Google Scholar 

  6. Burrus CS, Gopinath RA, Guo H, Odegard JE, Selesnick IW (1998) Introduction to wavelets and wavelet transforms: a primer, vol 1. Prentice hall, Upper Saddle River

    Google Scholar 

  7. Raghuveer MR, Bopardikar AS (1998) Wavelet transforms: introduction to theory and applications. Pearson Education Asia, Delhi

    MATH  Google Scholar 

  8. Heil CE, Walnut DF (1989) Continuous and discrete wavelet transforms. SIAM Rev 31(4):628–666

    Article  MathSciNet  MATH  Google Scholar 

  9. Antoine JP, Carrette P, Murenzi R, Piette B (1993) Image analysis with two-dimensional continuous wavelet transform. Signal Process 31(3):241–272

    Article  MATH  Google Scholar 

  10. Pons-Llinares J, Antonino-Daviu JA, Riera-Guasp M, Lee SB, Kang TJ, Yang C (2014) Advanced induction motor rotor fault diagnosis via continuous and discrete time–frequency tools. IEEE Trans Ind Electron 62(3):1791–1802

    Article  Google Scholar 

  11. Shensa MJ (1992) The discrete wavelet transform: wedding the a trous and Mallat algorithms. IEEE Trans Signal Process 40(10):2464–2482

    Article  MATH  Google Scholar 

  12. Meurant G (2012) Wavelets: a tutorial in theory and applications, vol 2. Academic, Boston

    Google Scholar 

  13. Strang G, Nguyen T (1996) Wavelets and filter banks. SIAM, Wellesley

    MATH  Google Scholar 

  14. Li H, Manjunath BS, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graph Models Image Process 57(3):235–245

    Article  Google Scholar 

  15. He C, Zheng YF, Ahalt SC (2002) Object tracking using the Gabor wavelet transform and the golden section algorithm. IEEE Trans Multimedia 4(4):528–538

    Article  Google Scholar 

  16. Wang Y, Doherty JF, Van Dyck RE (2000) Moving object tracking in video. In: Proceedings 29th applied imagery pattern recognition workshop. IEEE, Los Alamitos, pp 95–101

    Chapter  Google Scholar 

  17. Lai CC, Tsai CC (2010) Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans Instrum Meas 59(11):3060–3063

    Article  Google Scholar 

  18. Shih FY, Chuang CF, Wang PS (2008) Performance comparisons of facial expression recognition in JAFFE database. Int J Pattern Recognit Artif Intell 22(03):445–459

    Article  Google Scholar 

  19. Strang G (1989) Wavelets and dilation equations: a brief introduction. SIAM Rev 31(4):614–627

    Article  MathSciNet  MATH  Google Scholar 

  20. Simoncelli EP, Freeman WT, Adelson EH, Heeger DJ (1991) Shiftable multiscale transforms. IEEE Trans Inf Theory 38(2):587–607

    Article  MathSciNet  Google Scholar 

  21. Selesnick I, Baraniuk R, Kingsbury N (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151

    Article  Google Scholar 

  22. Singh R, Khare A (2014) Fusion of multimodal medical images using Daubechies complex wavelet transform–a multiresolution approach. Inf Fusion 19:49–60

    Article  Google Scholar 

  23. Singh R, Srivastava R, Prakash O, Khare A (2012) Multimodal medical image fusion in dual tree complex wavelet transform domain using maximum and average fusion rules. J Med Imaging Health Inf 2(2):168–173

    Article  Google Scholar 

  24. Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal 3(2):186–200

    Article  MathSciNet  MATH  Google Scholar 

  25. Calderbank AR, Daubechies I, Sweldens W, Yeo BL (1998) Wavelet transforms that map integers to integers. Appl Comput Harmon Anal 5(3):332–369

    Article  MathSciNet  MATH  Google Scholar 

  26. Fowler JE (2005) The redundant discrete wavelet transform and additive noise. IEEE Signal Process Lett 12(9):629–632

    Article  Google Scholar 

  27. Kingsbury N (2001) Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 10(3):234–253

    Article  MathSciNet  MATH  Google Scholar 

  28. Lina JM, Mayrand M (1995) Complex daubechies wavelets. Appl Comput Harmon Anal 2(3):219–229

    Article  MathSciNet  MATH  Google Scholar 

  29. Kingsbury NG (1998) The dual-tree complex wavelet transform: a new technique for shift invariance and directional filters. In: IEEE digital signal processing workshop, vol 86. Citeseer, Bryce Canyon, pp 120–131

    Google Scholar 

  30. Lina JM (1998) Complex daubechies wavelets: filters design and applications. In: Inverse problems, tomography, and image processing. Springer, Boston, MA, pp 95–112

    Chapter  Google Scholar 

  31. Clonda D, Lina JM, Goulard B (2004) Complex Daubechies wavelets: properties and statistical image modelling. Signal Process 84(1):1–23

    Article  MATH  Google Scholar 

  32. Lina JM (1997) Image processing with complex Daubechies wavelets. J Math Imaging Vision 7(3):211–223

    Article  MathSciNet  Google Scholar 

  33. Shukla PD (2003) Complex wavelet transforms and their applications. Glasgow (United Kingdom)), M. Phil. Thesis, Dept. of Electronic and Electrical Engineering, University of Strathclyde.

    Google Scholar 

  34. Kingsbury N (2000) A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: Proceedings 2000 international conference on image processing (Cat. No. 00CH37101), vol 2. IEEE, Vancouver, pp 375–378

    Chapter  Google Scholar 

  35. Lawton W (1993) Applications of complex valued wavelet transforms to subband decomposition. IEEE Trans Signal Process 41(12):3566–3568

    Article  MATH  Google Scholar 

  36. Miller M, Kingsbury N (2008) Image modeling using interscale phase properties of complex wavelet coefficients. IEEE Trans Image Process 17(9):1491–1499

    Article  MathSciNet  Google Scholar 

  37. Lina JM, Drouilly P (1996) The importance of the phase of the symmetric Daubechies wavelets representation of signals. In: Proc. IWISP, vol 96, p 61

    Chapter  Google Scholar 

  38. Lina JM, Gagnon L (1995) Image enhancement with symmetric Daubechies wavelets. In: Wavelet applications in signal and image processing III, vol 2569. International Society for Optics and Photonics, Bellingham, pp 196–207

    Chapter  Google Scholar 

  39. Candès EJ, Donoho DL (2001) Curvelets and curvilinear integrals. J Approx Theory 113(1):59–90

    Article  MathSciNet  MATH  Google Scholar 

  40. Candès EJ (2003) What is a curvelet? Not Am Math Soc 50(11):1402–1403

    MathSciNet  Google Scholar 

  41. Candes EJ, Donoho DL (2000) Curvelets: a surprisingly effective nonadaptive representation for objects with edges. Stanford Univ Ca Dept of Statistics, Stanford

    Google Scholar 

  42. Candes E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MathSciNet  MATH  Google Scholar 

  43. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  Google Scholar 

  44. Do MN, Vetterli M (2003) Contourlets. Stud Comput Math 10:83–105

    Article  MathSciNet  MATH  Google Scholar 

  45. Da Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  46. Zhou J, Cunha AL, Do MN (2005) Nonsubsampled contourlet transform: construction and application in enhancement. In: IEEE international conference on image processing 2005, vol 1. IEEE, Genova, pp I–469

    Google Scholar 

  47. Fang L, Zhang H, Zhou J, Wang X (2019) Image classification with an RGB-channel nonsubsampled contourlet transform and a convolutional neural network. Neurocomputing.

    Google Scholar 

  48. Yang HY, Liang LL, Zhang C, Wang XB, Niu PP, Wang XY (2019) Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform. Soft Comput 23(13):4749–4764

    Article  Google Scholar 

  49. Najafi E, Loukhaoukha K (2019) Hybrid secure and robust image watermarking scheme based on SVD and sharp frequency localized contourlet transform. J Inf Secur Appl 44:144–156

    Google Scholar 

  50. Subasi A, Ahmed A, Aličković E, Hassan AR (2019) Effect of photic stimulation for migraine detection using random forest and discrete wavelet transform. Biomed Signal Process Control 49:231–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Nigam, S., Singh, A.K., Elhoseny, M. (2020). Wavelet Transforms: From Classical to New Generation Wavelets. In: Intelligent Wavelet Based Techniques for Advanced Multimedia Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31873-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31873-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31872-7

  • Online ISBN: 978-3-030-31873-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics