Skip to main content

Appendix F: Solutions to Problems

  • Chapter
  • First Online:
Book cover Navier-Stokes Turbulence
  • 1135 Accesses

Abstract

The solutions to the problems set at the end of each chapter are presented here. In some of the solutions, literature references are provided and additional material has been added to aid the interpretation of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge, U.K. (2006)

    Google Scholar 

  2. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Google Scholar 

  3. Truesdell, C.A.: The Kinematics of Vorticity. Indiana University Press, Bloomington, Indiana (1954)

    Google Scholar 

  4. Kollmann, W.: Fluid Mechanics in Spatial and Material Description. University Readers, San Diego (2011)

    Google Scholar 

  5. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge, U.K. (2002)

    Google Scholar 

  6. Hamman, C.W., Klewicki, J.C., Kirby, R.M.: On the Lamb vector divergence in Navier-Stokes flows. JFM 610, 261–284 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Oberlack, M.: Symmetrie. Invarianz und Selbstähnlichkeit in der Turbulenz. Shaker, Aachen, Germany (2000)

    Google Scholar 

  8. Oberlack, M., Waclawczyk, M., Rosteck, A., Avsarkisov, V.: Symmetries and their importance for statistical turbulence theory. Bull. J. SME 2, 1–72 (2015)

    Google Scholar 

  9. Janocha, D.D., Waclawcyk, M., Oberlack, M.: Lie symmetry analysis of the Hopf functional-differential equation. Symmetry 7, 1536–1566 (2015)

    Article  MathSciNet  Google Scholar 

  10. Constantin, P.: Euler equations, Navier-Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows. Lecture Notes in Mathematics, vol. 1871, pp. 1–43 (2006)

    Google Scholar 

  11. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, U.K. (2001)

    Google Scholar 

  12. Tsinober, A.: An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer, Dordrecht (2009)

    Google Scholar 

  13. Gibbon, J.D., Galanti, B., Kerr, R.M.: Stretching and compression of vorticity in the 3D Euler equations. In: Hunt, J.C.R., Vassilicos, J.C. (eds.) Turbulence Structure and Vortex Dynamics, Cambridge University Press (2000)

    Google Scholar 

  14. Wilczek, M., Meneveau, C.: Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields. JFM 756, 191–225 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, U.K. (2010)

    Google Scholar 

  16. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    Google Scholar 

  17. Leonard, A., Wray, A.: A new numerical method for the simulation of three-dimensional flow in a pipe. In: Krause E. (ed.) Lecture Notes in Physics 170. Springer, p. 335 (1982)

    Google Scholar 

  18. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publ. Inc., Mineola, New York (2001)

    Google Scholar 

  19. Kollmann, W.: Simulation of vorticity dominated flows using a hybrid approach: I formulation. Comput. Fluids 36, 1638–1647 (2007)

    Article  MathSciNet  Google Scholar 

  20. Canuto, C., Hussaini, M.Y., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  Google Scholar 

  21. Gelfand, I.M., Yaglom, A.M.: Integration in functional spaces and its application in quantum physics. J. Math. Physics 1, 48–69 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cameron, R.H., Martin, W.T.: Evaluation of various Wiener integrals by use of certain Sturm-Liouville differential equations. Bull. Am. Math. Soc. 51, 73–90 (1945)

    Article  MathSciNet  Google Scholar 

  23. Montroll, E.W.: Markoff chains, Wiener integrals and quantum theory. Comm. Pure Appl. Math. 5, 415–453 (1952)

    Article  MathSciNet  Google Scholar 

  24. Cameron, R.H., Martin, W.T.: Transformations of Wiener integrals under a general class of linear transformations. Trans. Am. Math. Soc. 58, 184–219 (1945)

    Article  MathSciNet  Google Scholar 

  25. Klauder, J.R.: A Modern approach to Functional Integration. Birkhaeuser/Springer, New York (2010)

    Google Scholar 

  26. Woyczynski, W.A.: Burgers-KPZ Turbulence: Goettingen Lectures. Lecture Notes in Math, vol. 1700. Springer, Berlin (1999)

    Google Scholar 

  27. Egorov, A.D., Sobolevsky, P.I., Yanovich, L.A.: Functional Integrals: Approximate Evaluation and Applications. Kluwer Academic Publication, Dordrecht (1993)

    Book  Google Scholar 

  28. Shen, H.H., Wray, A.A.: Stationary turbulent closure via the Hopf functional equation. J. Stat. Phys. 65, 33–52 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. Novikov, E.A.: Random-force method in turbulence theory. Sov. Phys. JETP 17, 1449–1454 (1963)

    MathSciNet  MATH  Google Scholar 

  30. Novikov, E.A.: Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20, 1290–1294 (1965)

    ADS  MathSciNet  Google Scholar 

  31. Panton, R.L.: Incompressible Flow, 2nd edn. Wiley, New York (1996)

    Google Scholar 

  32. Lukacs, E.: Characteristic Functions. Hafner Publication, New York (1970)

    Google Scholar 

  33. Davidson, P.A.: Turbulence. Oxford University Press, Oxford, U.K. (2004)

    Google Scholar 

  34. Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous, incompressible fluid at high Reynolds number. JFM 13, 82–85 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  35. Curl, R.L.: Dispersed phase mixing: part i. theory and effects in simple reactors. AIChE J. 9, 175–181 (1963)

    Article  Google Scholar 

  36. Chen, H., Chen, S., Kraichnan, R.H.: Probability distribution of a stochastically advected scalar field. Phys. Rev. Lett. 62, 2657 (1989)

    Article  ADS  Google Scholar 

  37. Duffy, D.G.: Greenś Functions with Applications. Chapman & Hall/CRC, Boca Raton, Florida (2001)

    Google Scholar 

  38. Pope, S.B.: Mapping closures for turbulent mixing and reaction. Theoret. Computat. Fluid Dyn. 2, 255–270 (1991)

    Article  ADS  Google Scholar 

  39. Miller, K.S.: Multidimensional Gaussian Distributions. Wiley, New York (1963)

    Google Scholar 

  40. Wilczek, M., Xu, H., Ouellette, N.T., Friedrich, R., Bodenschatz, E.: Generation of Lagrangian intermittency in turbulence by a self-similar mechanism. New J. Phys. 15, 055015 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Sagaut, P., Cambron, C.: Homogeneous Turbulence Dynamics. Cambridge University Press, New York (2008)

    Google Scholar 

  42. Kuksin, S., Shirikyan, A.: Mathematics of Two-dimensional turbulence, Cambridge Tracts in Mathematics, vol. 194. Cambridge University Press, U.K. (2012)

    Google Scholar 

  43. Meleshko, V.V., van Heijst, G.J.F.: On Chaplygin’s investigations of two-dimensional vortex structures in an invscid fluid. JFM 272, 157–182 (1994)

    Article  ADS  Google Scholar 

  44. Nickels, T.B.: Turbulent Coflowing Jets and Vortex Ring Collisions. University of Melbourne, Australia (1993). PhD thesis

    Google Scholar 

  45. Shelley, M.J., Meiron, D.I., Orszag, S.A.: Dynamical aspects of vortex reconnection in perturbed anti-parallel vortex tubes. JFM 246, 613–652 (1993)

    Article  ADS  Google Scholar 

  46. Nickels, T.B.: Inner scaling for wall-bounded flows subject to large pressure gradients. JFM 521, 217–239 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  47. Vieillefosse, P.: Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. France 43, 837–842 (1982)

    Article  MathSciNet  Google Scholar 

  48. Vieillefosse, P.: Internal motion of a small element of fluid in an inviscid flow. Physica A 125, 150–162 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  49. Cantwell, B.J.: Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4, 782–793 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  50. Meneveau, C.: Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annua. Rev. Fluid Mech. 43, 219–245 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  51. Mullin, T., Juel, A., Peacock, T.: Sil’nikov Chaos in Fluid Flows. In: Vassilicos, J.C. (ed.) Intermittency in Turbulent Flows, Cambridge University Press. J.C.R. Hunt and J.C. Vassilicos, eds., Cambridge University Press (2001)

    Google Scholar 

  52. Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V. Chua, L.O.: Methods of Qualitative Theory in Nonlinear Dynamics. vol.I, World Scientific, London (1998)

    Google Scholar 

  53. Rektorys, K. (ed.): Survey of Applicable Mathematics. MIT Press, Cambridge Mass (1969)

    Google Scholar 

  54. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    Google Scholar 

  55. Kusnetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    Google Scholar 

  56. Barkley, D.: Theoretical perspective on the route to turbulence in a pipe. JFM 803, P1–1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  57. Kollmann, W., Prieto, M.I.: DNS of the collision of co-axial vortex rings. Comput. Fluids 73, 47–64 (2013)

    Article  MathSciNet  Google Scholar 

  58. Surana, A., Grunberg, O., Haller, G.: Exact theory of three-dimensional flow separation. Part 1. Steady separation. JFM 564, 57–103 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  59. Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A 2, 765–777 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  60. Vlaykov, D.G., Wilczek, M.: On the small-scale structure of turbulence and its impact on the pressure field. JFM 861, 422–446 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  61. Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press (1956)

    Google Scholar 

  62. Orlandi, P., Carnevale, G.F.: Nonlinear amplification of vorticity in inviscid interaction of orthogonal Lamb dipoles. Phys. Fluids 19, 057106 (2007)

    Article  ADS  Google Scholar 

  63. Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press (1995)

    Google Scholar 

  64. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  65. Lerner, N.: A Course on Integration Theory. Birkh/"auser/Springer Basel (2014)

    Google Scholar 

  66. Wang, X.: Volumes of Generalized Unit Balls. Math. Mag. 78, 390–395 (2005)

    Article  Google Scholar 

  67. Folland, G.B.: How to integrate a polynomial over a sphere. Am. Math. Mont. 108, 446–448 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kollmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kollmann, W. (2019). Appendix F: Solutions to Problems. In: Navier-Stokes Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-030-31869-7_28

Download citation

Publish with us

Policies and ethics