Skip to main content

The Limit of Infinite Reynolds Number for Incompressible Fluids

  • Chapter
  • First Online:
Book cover Navier-Stokes Turbulence
  • 1247 Accesses

Abstract

The Reynolds number defined by (2.8) is the dimensionless parameter appearing in the momentum balance (2.7) of the Navier–Stokes equations that indicates the fundamental character of the flow of an incompressible fluid. The parameters determining this number are the length scale L, the velocity scale U and the kinematic viscosity \(\tilde{\nu }\) as measure of resistance to shearing motion or the dynamic viscosity \(\tilde{\mu }=\tilde{\rho }\tilde{\nu }\) plus density. This number can be computed, if the following condition is satisfied: Length and velocity scales characteristic for the flow can be identified. The definition of length and velocity scales is in general not unique and in some cases there is no obvious a priori choice for them. The present arguments and conjectures for the limit of infinite Reynolds numbers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smits, A.J., McKeon, B.J., Marusic, I.: High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)

    Article  ADS  Google Scholar 

  2. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento 6(Suppl.), 279–287 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  3. Eyink, G.L.: Dissipative anomalies in singular Euler flows. Physica D 237, 1956–1968 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (1998)

    MATH  Google Scholar 

  6. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, New York (2009)

    Book  Google Scholar 

  7. Truesdell, C.A.: The Kinematics of Vorticity. Indiana University Press, Bloomington, Indiana (1954)

    MATH  Google Scholar 

  8. Saffman, P.G.: Vortex Dynamics. Cambridge University Press, Cambridge, U.K. (1992)

    MATH  Google Scholar 

  9. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge, U.K. (2002)

    MATH  Google Scholar 

  10. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, Berlin (2006)

    Book  Google Scholar 

  11. Vladimirov, V.A., Moffatt, H.K.: On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 1. Fundamental principles. JFM 283, 125–139 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kollmann, W.: Fluid Mechanics in Spatial and Material Description. University Readers, San Diego (2011)

    Google Scholar 

  13. Gibbon, J.D.: The three-dimensional Euler equations: where do we stand? Physica D 237, 1894–1904 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kerr, R.M.: The role of singularities in turbulence. In: Kida, S. (ed.) Unstable and Turbulent Motion in Fluids, World Scientific Publishing, Singapore

    Google Scholar 

  15. Kerr, R.M.: A new role for vorticity and singular dynamics in turbulence. In: Debnath, L. (ed.) Nonlinear Instability Analysis, vol. II, pp. 15–68. WIT Press, Southhampton U.K. (2001)

    Google Scholar 

  16. Orlandi, P., Pirozzoli, S., Carnevale, G.F.: Vortex events in Euler and Navier-Stokes simulations with smooth initial conditions. JFM 690, 288–320 (2012)

    Article  ADS  Google Scholar 

  17. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 9–13 (1941)

    MathSciNet  MATH  Google Scholar 

  18. Sreenivasan, K.R.: An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids 10, 528–529 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kaneda, Y., Ishihara, T., Yokokawa, M., Uno, A.: Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a box. Phys. Fluids 15, L21 (2003)

    Article  Google Scholar 

  20. Pearson, B.R., Krogstad, P.A., van de Water, W.: Measurements of the turbulent energy dissipation rate. Phys. Fluids 14, 1288–1290 (2002)

    Article  ADS  Google Scholar 

  21. Mydlarski, L., Wahrhaft, Z.: On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. JFM 320, 331 (1996)

    Article  ADS  Google Scholar 

  22. Mydlarski, L., Wahrhaft, Z.: Passive scalar statistics in high-Peclet-number grid turbulence. JFM 358, 135 (1998)

    Article  ADS  Google Scholar 

  23. Gamard, S., George, W.K.: Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow Turbul. Comb. 63, 443 (1999)

    Article  Google Scholar 

  24. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge MA (1972)

    MATH  Google Scholar 

  25. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  26. Falconer, K.: The Geometry of Fractal Sets. Oxford University Press (1984)

    Google Scholar 

  27. Filip, S., Javeed, A., Trefethen, L.N.: Smooth random functions, Random ODE’s and Gaussian processes. SIAM Rev. 61, 185–205 (2019)

    Article  MathSciNet  Google Scholar 

  28. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  29. Melander, M.V., McWilliams, J.C., Zabusky, N.J.: Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. JFM 178, 137–159 (1987)

    Article  ADS  Google Scholar 

  30. Smits, A.J. (ed.): IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  31. Schlichting, H.: Boundary Layer Theory. McGraw-Hill (1987)

    Google Scholar 

  32. Nikuradse, J.: Laws of flow in rough pipes. NACA TM 1292, (1933)

    Google Scholar 

  33. Zagarola, M.V., Smits, A.J.: Mean-flow scaling of turbulent pipe flow. JFM 373, 33–79 (1998)

    Article  ADS  Google Scholar 

  34. McKeon, B.J., Swanson, C.J., Zagarola, M.V., Donnelly, R.J., Smits, A.J.: Friction factors for smooth pipe flow. JFM 511, 41–44 (2004)

    Article  ADS  Google Scholar 

  35. Donnelly, R.J.: Background on Superfluid Turbulence. In: Smits, A.J. (ed.) IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, pp. 92–100. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  36. Vinen, W.F.: Superfluid Turbulence: Experiments, Physical Principles, and Outstanding Problems. In: Smits, A.J. (ed.) IUTAM Symposium on Reynolds Number Scaling in Turbulent Flow, pp. 101–108. Kluwer Academic Publishers, Dordrecht (2004)

    Chapter  Google Scholar 

  37. Orlandi, P., Carnevale, G.F.: Nonlinear amplification of vorticity in inviscid interaction of orthogonal Lamb dipoles. Phys. Fluids 19, 057106 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kollmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kollmann, W. (2019). The Limit of Infinite Reynolds Number for Incompressible Fluids. In: Navier-Stokes Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-030-31869-7_22

Download citation

Publish with us

Policies and ethics