Skip to main content

Broad-Band Spectroscopy of Nanoconfined Water Molecules

  • Conference paper
  • First Online:
4th International Conference on Nanotechnologies and Biomedical Engineering (ICNBME 2019)

Abstract

We have performed broad-band spectroscopic investigations of vibrational and relaxational excitations of water molecules confined to nanocages within artificial beryl and mineral cordierite crystals. Signatures of quantum critical phenomena within the H2O molecular network are registered in beryl. In cordierite, a density functional analysis is applied to reconstruct the potential energy landscape experienced by H2O molecules, revealing a pronounced anisotropy with a potential well of about 10 meV for the molecular dipole moment aligned along the b-axis. This anisotropy leads to a strongly temperature dependent and anisotropic relaxational response of the dipoles at radiofrequencies with the activation energies corresponding to the barriers of the rotational potential. At T ≈ 3 K, we identify signatures of a transition into a glassy state composed by clusters of H2O dipoles. Rich set of anisotropic and temperature-dependent excitations are observed in the terahertz frequency range which we associate with rotational/translational vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibbs, G.G., Breck, D.W., Meagher, E.P.: Structural refinement of hydrous and anhydrous synthetic beryl, Al2(Be3Si6)O18 and emerald, Al1.9Cr0.1(Be3Si6)O18. Lithos 1, 275–285 (1968)

    Article  Google Scholar 

  2. Gibbs, G.V.: The polymorphism of cordierite I: the crystal structure of low cordierite. Am. Miner. 51, 1068–1087 (1966)

    Google Scholar 

  3. Thomas, V.G., Klyakhin, V.A.: The specific features of beryl doping by chromium under hydrothermal conditions. In: Sobolev, N.V. (ed.) Mineral Forming in Endogenic Processes, pp. 60–67. Nauka, Novosibirsk (1987) (in Russian)

    Google Scholar 

  4. Gorshunov, B.P., Torgashev, V.I., Zhukova, E.S., et al.: Incipient ferroelectricity of water molecules confined to nano-channels of beryl. Nat. Commun. 7, 12842 (2016)

    Article  Google Scholar 

  5. Gorshunov, B.P., Zhukova, E.S., Torgashev, V.I., et al.: Quantum behavior of water molecules confined to nanocavities in gemstones. J. Phys. Chem. Lett. 4, 2015–2020 (2013)

    Article  Google Scholar 

  6. Kolesnikov, A.I., Reiter, G.F., Choudhury, N., et al.: Quantum tunneling of water in beryl: a new state of the water molecule. Phys. Rev. Lett. 116, 167802 (2016)

    Article  Google Scholar 

  7. Khmelnitskii, D.E., Shneerson, V.L.: Low-temperature displacement-type phase transition in crystals. Sov. Phys.: Solid State 13, 687 (1971)

    Google Scholar 

  8. Khmelnitskii, D.E., Shneerson, V.L.: Phase transitions of the displacement type in crystals at very low temperatures. Sov. Phys. JETP 37, 164 (1973)

    Google Scholar 

  9. Rowley, S.E., Spalek, L.J., Smith, R.P., et al.: Ferroelectric quantum criticality. Nat. Phys. 10, 367 (2014)

    Article  Google Scholar 

  10. Viana, R., Lunkenheimer, P., Hemberger, J., et al.: Dielectric spectroscopy in SrTiO3. Phys. Rev. B 50, 601–604 (1994)

    Article  Google Scholar 

  11. Cowley, R.A., Gvasaliya, S.N., Lushnikov, S.G., et al.: Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011)

    Article  Google Scholar 

  12. Nakajima, Y., Naya, S.: Orientational phase transition and dynamic susceptibility of hindered-rotating dipolar system—a librator-rotator model. J. Phys. Soc. Jpn. 63, 904–914 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Untereiner for careful crystal preparation. The study was funded by RFBR (projects 18-32-20186 and 18-32-00286), by RF Ministry of Science and Higher Education (State assignment FSRC «Crystallography and Photonics» and Program 5-100), Deutsche Forschungsgemeinschaft (DR228/61-1) and by the Stuttgart/Ulm Research Center for Integrated Quantum Science and Technology (IQST). E.U. acknowledges the support of the European Social Fund and of the Ministry of Science Research and the Arts of Baden-Württemberg. M.S. and SK acknowledge Czech Science Foundation (Project No. 15-08389S) and MŠMT (Project No. SOLID21—CZ.02.1.01/0.0/0.0/16_019/0000760).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gorshunov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belyanchikov, M.A. et al. (2020). Broad-Band Spectroscopy of Nanoconfined Water Molecules. In: Tiginyanu, I., Sontea, V., Railean, S. (eds) 4th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2019. IFMBE Proceedings, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-31866-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31866-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31865-9

  • Online ISBN: 978-3-030-31866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics