Advertisement

Passive Scene Recognition

  • Pascal MeißnerEmail author
Chapter
  • 223 Downloads
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 135)

Abstract

Detailed technical presentation of our contributions that are related to Passive Scene Recognition. This includes the learning of Trees of Implicit Shape Models as well as carrying out scene recognition on the basis of these classifiers.

References

  1. 1.
    Bronshtein, I., Semendyayev, K., Musiol, G., Muehlig, H.: Handbook of Mathematics, 5th edn. Springer, Berlin (2007)Google Scholar
  2. 2.
    Carneiro, G., Lowe, D.: Sparse flexible models of local features. In: European Conference on Computer Vision, pp. 29–43. Springer, Berlin (2006)Google Scholar
  3. 3.
    Crandall, D., Felzenszwalb, P., Huttenlocher, D.: Spatial priors for part-based recognition using statistical models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. vol. 1, pp. 10–17. IEEE (2005)Google Scholar
  4. 4.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Funda, J., Taylor, R.H., Paul, R.P.: On homogeneous transforms, quaternions, and computational efficiency. IEEE Trans. Robot. Autom. 6(3), 382–388 (1990)Google Scholar
  6. 6.
    Grauman, K., Leibe, B.: Visual object recognition. Synth. Lect. Artif. Intell. Mach. Learn. 5(2), 1–181 (2011)CrossRefGoogle Scholar
  7. 7.
    Horstmann, M.G.: Tischgedeck und Tafelarrangement — herr mika TAFELKULTUR. http://herr-mika.tafelkultur.eu/?page_id=58. Accessed 15 May 2017
  8. 8.
    Illingworth, J., Kittler, J.: A survey of the hough transform. Comput. Vis., Graph., Image Process. 44(1), 87–116 (1988)CrossRefGoogle Scholar
  9. 9.
    Jäkel, R., Meißner, P., Schmidt-Rohr, S., Dillmann, R.: Distributed generalization of learned planning models in robot programming by demonstration. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4633–4638. IEEE (2011)Google Scholar
  10. 10.
    Jäkel, R., Schmidt-Rohr, S.R., Rühl, S.W., Kasper, A., Xue, Z., Dillmann, R.: Learning of planning models for dexterous manipulation based on human demonstrations. Int. J. Soc. Robot. 1–12 (2012)Google Scholar
  11. 11.
    Kenwright, B.: Dual-quaternions, from classical mechanics to computer graphics and beyond (2012)Google Scholar
  12. 12.
    Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vis. 77(1–3), 259–289 (2008)CrossRefGoogle Scholar
  13. 13.
    Mehlhaus, J.: Komparative Analyse ausgewählter Algorithmen zur kombinatorischen Optimierung der räumlichen Relationen in hierarchischen Implicit Shape Models. Bachelor’s thesis, Advisor: P. Meißner, Reviewer: R. Dillmann, Karlsruhe Institute of Technology (2016)Google Scholar
  14. 14.
    Meißner, P., Hanselmann, F., Jäkel, R., Schmidt-Rohr, S., Dillmann, R.: Automated selection of spatial object relations for modeling and recognizing indoor scenes with hierarchical implicit shape models. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4257–4264. IEEE (2015)Google Scholar
  15. 15.
    Meißner, P., Reckling, R., Jäkel, R., Schmidt-Rohr, S., Dillmann, R.: Recognizing scenes with hierarchical implicit shape models based on spatial object relations for programming by demonstration. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2013)Google Scholar
  16. 16.
    Mitchell, T.M.: Machine Learning, International edn. McGraw-Hill, New York (1997)Google Scholar
  17. 17.
    Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. (CSUR) 33(1), 31–88 (2001)CrossRefGoogle Scholar
  18. 18.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, Third International edn. Prentice Hall Press, Prentice (2010)Google Scholar
  19. 19.
    Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recognit. 25(1), 65–77 (1992)CrossRefGoogle Scholar
  20. 20.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer Science + Business Media, Berlin (2008)Google Scholar
  21. 21.
    Sloane, N.J.A.: Number of connected labeled graphs with n nodes — the on-line encyclopedia of integer sequences. http://oeis.org/A001187. Accessed 02 June 2017
  22. 22.
    Weisstein, E.W.: Connected graph — a wolfram web resource. http://mathworld.wolfram.com/ConnectedGraph.html. Accessed 18 Feb 2017
  23. 23.
    Weisstein, E.W.: Square pyramidal number — a wolfram web resource. http://mathworld.wolfram.com/SquarePyramidalNumber.html. Accessed 30 June 2017

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.IAR-IPRKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations