Related Work

  • Pascal MeißnerEmail author
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 135)


Summary and comparison of state-of-the-art approaches in the fields of scene recognition, part-based object recognition, and view planning.


  1. 1.
    Bajcsy, R.: Active perception. Proc. IEEE 76(8), 966–1005 (1988)CrossRefGoogle Scholar
  2. 2.
    Blodow, N., Goron, L.C., Marton, Z.C., Pangercic, D., Rühr, T., Tenorth, M., Beetz, M.: Autonomous semantic mapping for robots performing everyday manipulation tasks in kitchen environments. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4263–4270. IEEE (2011)Google Scholar
  3. 3.
    Bronshtein, I., Semendyayev, K., Musiol, G., Muehlig, H.: Handbook of Mathematics, 5th edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  4. 4.
    Chen, S., Li, Y., Wang, W., Zhang, J.: Active Sensor Planning for Multiview Vision Tasks, vol. 1. Springer, Berlin (2008)CrossRefGoogle Scholar
  5. 5.
    Connolly, C.: The determination of next best views. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, vol. 2, pp. 432–435. IEEE (1985)Google Scholar
  6. 6.
    Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: European Conference on Computer Vision, pp. 428–441. Springer, Berlin (2006)Google Scholar
  7. 7.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)Google Scholar
  8. 8.
    Dogar, M.R., Koval, M.C., Tallavajhula, A., Srinivasa, S.S.: Object search by manipulation. Auton. Robot. 36(1–2), 153–167 (2014)CrossRefGoogle Scholar
  9. 9.
    Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  10. 10.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)zbMATHGoogle Scholar
  11. 11.
    Eidenberger, R., Grundmann, T., Schneider, M., Feiten, W., Fiegert, M., Wichert, G.v., Lawitzky, G.: Scene analysis for service robots. In: Towards Service Robots for Everyday Environments, pp. 181–213. Springer, Berlin (2012)Google Scholar
  12. 12.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)CrossRefGoogle Scholar
  13. 13.
    Fergus, R.: Convolutional neural networks and computer vision. (2016)
  14. 14.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. CVPR 2003, vol. 2, pp. II–II. IEEE (2003)Google Scholar
  15. 15.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587 (2014)Google Scholar
  16. 16.
    Grauman, K., Leibe, B.: Visual object recognition. Synth. Lect. Artif. Intell. Mach. Learn. 5(2), 1–181 (2011)CrossRefGoogle Scholar
  17. 17.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  18. 18.
    Krainin, M., Curless, B., Fox, D.: Autonomous generation of complete 3d object models using next best view manipulation planning. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5031–5037. IEEE (2011)Google Scholar
  19. 19.
    Kriegel, S., Rink, C., Bodenmuller, T., Narr, A., Suppa, M., Hirzinger, G.: Next-best-scan planning for autonomous 3d modeling. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2850–2856. IEEE (2012)Google Scholar
  20. 20.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  21. 21.
    Kunze, L., Doreswamy, K.K., Hawes, N.: Using qualitative spatial relations for indirect object search. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 163–168. IEEE (2014)Google Scholar
  22. 22.
    LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)CrossRefGoogle Scholar
  23. 23.
    Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vis. 77(1–3), 259–289 (2008)CrossRefGoogle Scholar
  24. 24.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  25. 25.
    Mitchell, T.M.: Machine Learning, International edn. McGraw-Hill, New York (1997)Google Scholar
  26. 26.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefGoogle Scholar
  27. 27.
    Potthast, C., Sukhatme, G.S.: A probabilistic framework for next best view estimation in a cluttered environment. J. Vis. Commun. Image Represent. 25(1), 148–164 (2014)CrossRefGoogle Scholar
  28. 28.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, Third International edn. Prentice Hall Press, Upper Saddle River (2010)Google Scholar
  29. 29.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer Science + Business Media, Berlin (2008)CrossRefGoogle Scholar
  30. 30.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
  31. 31.
    Sudderth, E.B., Torralba, A., Freeman, W.T., Willsky, A.S.: Describing visual scenes using transformed objects and parts. Int. J. Comput. Vis. 77(1–3), 291–330 (2008)CrossRefGoogle Scholar
  32. 32.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer Science & Business Media, Berlin (2010)zbMATHGoogle Scholar
  33. 33.
  34. 34.
    Toya, G., Stephan, M.: Detection of structured objects with a range camera. Ph.D. Thesis, ETH Zürich, Zürich (2008)Google Scholar
  35. 35.
    Vasquez-Gomez, J.I., Sucar, L.E., Murrieta-Cid, R.: View planning for 3d object reconstruction with a mobile manipulator robot. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 4227–4233. IEEE (2014)Google Scholar
  36. 36.
    Weisstein, E.W.: Complete graph — a Wolfram Web Resource. Accessed 01 March 2018
  37. 37.
    Weisstein, E.W.: Star graph — a Wolfram Web Resource. Accessed 01 March 2018
  38. 38.
    Weisstein, E.W.: Tree — a Wolfram Web Resource. Accessed 01 March 2018
  39. 39.
    Ye, Y., Tsotsos, J.K.: Sensor planning for 3d object search. Comput. Vis. Image Underst. 73(2), 145–168 (1999)CrossRefGoogle Scholar
  40. 40.
    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene cnns. arXiv:1412.6856 (2014)
  41. 41.
    Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.IAR-IPRKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations