Skip to main content

Bio-hydrometallurgical Methods For Recycling Spent Lithium-Ion Batteries

Abstract

A mature technology of lithium-ion batteries (LIBs) is applied in various electronic devices. The wide application of LIBs has brought large quantities of spent batteries, which has become a global problem. Owing to unfavorable effects of spent LIBs on the economic and environmental aspects, much effort has been made in many countries to manage and recycle the waste batteries. Owing to several restrictions in conventional recycling methods, the use of microorganisms has attracted increasing attention. The bio-hydrometallurgical approaches realize the win-win situation of environmental and economic benefits. In this chapter, the information available on the basic principles and recent developments of the bioleaching of metals from LIBs are reviewed in detail. Additionally, this chapter gives an overview of the previous studies performed in this field. Furthermore, the challenges, limitations, and potential solutions for applying more efficient bioleaching approach for recovery of metals from LIBs are highlighted.

Keywords

  • Lithium-ion batteries
  • Recycling processes
  • Bio-hydrometallurgy
  • Bioleaching
  • Microorganism

N. Bahaloo-Horeh and F. Vakilchap—Authors have the same contribution.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-31834-5_7
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-31834-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

References

  1. J.H. Duffus, “ Heavy metals” a meaningless term? (IUPAC technical report). Pure Appl. Chem. 74, 793–807 (2002)

    CAS  CrossRef  Google Scholar 

  2. Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, B. Xin, Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J. Clean. Prod. 116, 249–258 (2015)

    CrossRef  CAS  Google Scholar 

  3. N. Bahaloo-Horeh, S.M. Mousavi, S.A. Shojaosadati, Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J. Power Sour. 320, 257–266 (2016)

    CrossRef  CAS  Google Scholar 

  4. R. Marcincakova, J. Kadukova, A. Mrazikova, O. Velgosova, A. Luptakova, S. Ubaldini, Metal bioleaching from spent lithium-ion batteries using acidophilic bacterial strains. Inżynieria Miner 17, 117–120 (2016)

    Google Scholar 

  5. G. Zeng, S. Luo, X. Deng, L. Li, C. Au, Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner. Eng. 49, 40–44 (2013)

    CAS  CrossRef  Google Scholar 

  6. M. Sun, Y. Wang, J. Hong, J. Dai, R. Wang, Z. Niu, B. Xin, Life cycle assessment of a bio-hydrometallurgical treatment of spent Zn-Mn batteries. J. Clean. Prod. 129, 350–358 (2016)

    CAS  CrossRef  Google Scholar 

  7. B.K. Biswal, U.U. Jadhav, M. Madhaiyan, L. Ji, E.-H. Yang, B. Cao, Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 12343–12352 (2018)

    CAS  CrossRef  Google Scholar 

  8. D. Mishra, D.-J. Kim, D.E. Ralph, J.-G. Ahn, Y.-H. Rhee, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 28, 333–338 (2008)

    CAS  CrossRef  Google Scholar 

  9. N. Bahaloo-Horeh, S.M. Mousavi, Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manage. 60, 666–679 (2017)

    CAS  CrossRef  Google Scholar 

  10. A.D. Zand, M.A. Abduli, Current situation of used household batteries in Iran and appropriate management policies. Waste Manage. 28, 2085–2090 (2008)

    CrossRef  Google Scholar 

  11. M. Hartono, M.A. Astrayudha, H. Petrus, W. Budhijanto, H. Sulistyo, Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism. Rasayan J Chem 10, 897–903 (2017)

    CAS  Google Scholar 

  12. W. Zhang, C. Xu, W. He, G. Li, J. Huang, A review on management of spent lithium-ion batteries and strategy for resource recycling of all components from them. Waste Manage. Res. 36, 99–112 (2018)

    CAS  CrossRef  Google Scholar 

  13. S. Ubaldini, J. Kadukova, A. Mrazikova, P. Fornari, A. Luptakova, R. Marcincakova, P. Pizzichemi, Application of innovative processes for the valorisation of spent alkaline batteries. Chem. Eng. Trans. 39, 1609–1614 (2014)

    Google Scholar 

  14. Z. Niu, Q. Huang, J. Wang, Y. Yang, B. Xin, S. Chen, Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%. J. Hazard. Mater. 298, 170–177 (2015)

    CAS  CrossRef  Google Scholar 

  15. K.M. Winslow, S.J. Laux, T.G. Townsend, A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 129, 263–277 (2018)

    CrossRef  Google Scholar 

  16. J. Lee, B.D. Pandey, Bio-processing of solid wastes and secondary resources for metal extraction–a review. Waste Manage. 32, 3–18 (2012)

    CAS  CrossRef  Google Scholar 

  17. M.-J. Kim, J.-Y. Seo, Y.-S. Choi, G.-H. Kim, Bioleaching of spent Zn–Mn or Ni-Cd batteries by Aspergillus species. Waste Manage. 51, 168–173 (2016)

    CAS  CrossRef  Google Scholar 

  18. L.-P. He, S.-Y. Sun, X.-F. Song, J.-G. Yu, Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Manage. 64, 171–181 (2017)

    CAS  CrossRef  Google Scholar 

  19. S. Bindschedler, T.Q.T.V. Bouquet, D. Job, E. Joseph, P. Junier, Fungal biorecovery of gold from e-waste. Adv. Appl. Microbiol. Elsevier, 53–81 (2017)

    Google Scholar 

  20. N. Bahaloo-Horeh, S.M. Mousavi, M. Baniasadi, Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J. Clean. Prod. 197, 1546–1557 (2018)

    CAS  CrossRef  Google Scholar 

  21. J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, K. Vandeputte, Recycling rechargeable lithium-ion batteries: critical analysis of natural resource savings. Resour. Conserv. Recycl. 54, 229–234 (2010)

    CrossRef  Google Scholar 

  22. B. Xin, W. Jiang, H. Aslam, K. Zhang, C. Liu, R. Wang, Y. Wang, Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresour. Technol. 106, 147–153 (2012)

    CAS  CrossRef  Google Scholar 

  23. A.M. Diederen, Metal minerals scarcity: a call for managed austerity and the elements of hope (Saf, TNO Defence, Secur, 2009)

    Google Scholar 

  24. A. Akcil, F. Vegliò, F. Ferella, M.D. Okudan, A. Tuncuk, A review of metal recovery from spent petroleum catalysts and ash. Waste Manage. 45, 420–433 (2015)

    CAS  CrossRef  Google Scholar 

  25. O. Velgosová, J. Kaduková, R. Marcinčáková, A. Mražíková, L. Fröhlich, The role of main leaching agents responsible for Ni bioleaching from spent Ni-Cd batteries. Sep. Sci. Technol. 49, 438–444 (2014)

    CrossRef  CAS  Google Scholar 

  26. C. Cerruti, G. Curutchet, E. Donati, Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. J. Biotechnol. 62, 209–219 (1998)

    CAS  CrossRef  Google Scholar 

  27. N.J. Boxall, K.Y. Cheng, W. Bruckard, A.H. Kaksonen, Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J. Hazard. Mater. 360, 504–511 (2018)

    CAS  CrossRef  Google Scholar 

  28. O. Velgosová, J. Kaduková, R. Marcinčáková, Study of Ni and Cd bioleaching from spent Ni-Cd batteries. Nov. Biotechnol. Chim. 11, 117–123 (2012)

    CrossRef  CAS  Google Scholar 

  29. A. Heydarian, S.M. Mousavi, F. Vakilchap, M. Baniasadi, Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sour. 378, 19–30 (2018)

    CAS  CrossRef  Google Scholar 

  30. A. Işıldar, Biotechnologies for metal recovery from electronic waste and printed circuit boards. Waste Electr. Electron. Equip. Recycl. Elsevier, 241–269 (2018)

    Google Scholar 

  31. F. Beolchini, V. Fonti, A. Dell’Anno, L. Rocchetti, F. Vegliò, Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manage. 32, 949–956 (2012)

    CAS  CrossRef  Google Scholar 

  32. D. Mishra, Y.H. Rhee, Microbial leaching of metals from solid industrial wastes. J. Microbiol. 52, 1–7 (2014)

    CAS  CrossRef  Google Scholar 

  33. A. Pathak, L. Morrison, M.G. Healy, Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: a critical review. Bioresour. Technol. 229, 211–221 (2017)

    CAS  CrossRef  Google Scholar 

  34. T. Gu, S.O. Rastegar, S.M. Mousavi, M. Li, M. Zhou, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour. Technol. 261, 428–440 (2018)

    CAS  CrossRef  Google Scholar 

  35. H. Brandl, Microbial leaching of metals. Biotechnol. Set. 191–224 (2008) (Second Ed)

    Google Scholar 

  36. M.E. Hoque, O.J. Philip, Biotechnological recovery of heavy metals from secondary sources—An overview. Mater. Sci. Eng. C 31, 57–66 (2011)

    CAS  CrossRef  Google Scholar 

  37. D. Santhiya, Y.-P. Ting, Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. J. Biotechnol. 121, 62–74 (2006)

    CAS  CrossRef  Google Scholar 

  38. A. Potysz, E.D. van Hullebusch, J. Kierczak, Perspectives regarding the use of metallurgical slags as secondary metal resources–a review of bioleaching approaches. J. Environ. Manage. 219, 138–152 (2018)

    CAS  CrossRef  Google Scholar 

  39. I. Asghari, S.M. Mousavi, F. Amiri, S. Tavassoli, Bioleaching of spent refinery catalysts: a review. J. Ind. Eng. Chem. 19, 1069–1081 (2013)

    CAS  CrossRef  Google Scholar 

  40. K. Pollmann, S. Kutschke, S. Matys, J. Raff, G. Hlawacek, F.L. Lederer, Bio-recycling of metals: recycling of technical products using biological applications. Biotechnol. Adv. 36, 1048–1062 (2018)

    CAS  CrossRef  Google Scholar 

  41. G. Zeng, X. Deng, S. Luo, X. Luo, J. Zou, A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J. Hazard. Mater. 199–200, 164–169 (2012)

    CrossRef  CAS  Google Scholar 

  42. A. Işıldar, E.D. van Hullebusch, M. Lenz, G. Du Laing, A. Marra, A. Cesaro, S. Panda, A. Akcil, M.A. Kucuker, K. Kuchta, Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)–A review. J. Hazard. Mater. 362, 467–481 (2019)

    CrossRef  CAS  Google Scholar 

  43. J. Wang, B. Tian, Y. Bao, C. Qian, Y. Yang, T. Niu, B. Xin, Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1−x−yO2 Li-ion batteries. J. Hazard. Mater. 354, 250–257 (2018)

    CAS  CrossRef  Google Scholar 

  44. B. Xin, D. Zhang, X. Zhang, Y. Xia, F. Wu, S. Chen, L. Li, Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 100, 6163–6169 (2009)

    CAS  CrossRef  Google Scholar 

  45. A.H. Kaksonen, C. Morris, J. Wylie, J. Li, K. Usher, F. Hilario, C.A. du Plessis, Continuous flow 70 °C archaeal bioreactor for iron oxidation and jarosite precipitation. Hydrometallurgy 168, 40–48 (2017)

    CAS  CrossRef  Google Scholar 

  46. F. Anjum, M. Shahid, A. Akcil, Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117, 1–12 (2012)

    CrossRef  CAS  Google Scholar 

  47. J.D. Garcia-Garcia, R. Sanchez-Thomas, R. Moreno-Sanchez, Bio-recovery of non-essential heavy metals by intra-and extracellular mechanisms in free-living microorganisms. Biotechnol. Adv. 34, 859–873 (2016)

    CAS  CrossRef  Google Scholar 

  48. C.J. Liang, J.Y. Li, C.J. Ma, Review on cyanogenic bacteria for gold recovery from e-waste. Adv. Mater. Res. 878, 355–367 (2014)

    CrossRef  CAS  Google Scholar 

  49. M. Motaghed, S.M. Mousavi, S.O. Rastegar, S.A. Shojaosadati, Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization. Bioresour. Technol. 171, 401–409 (2014)

    CAS  CrossRef  Google Scholar 

  50. Y. Lu, Z. Xu, Precious metals recovery from waste printed circuit boards: a review for current status and perspective. Resour. Conserv. Recycl. 113, 28–39 (2016)

    CrossRef  Google Scholar 

  51. M. Arshadi, S.M. Mousavi, Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour. Technol. 174, 233–242 (2014)

    CAS  CrossRef  Google Scholar 

  52. A. Işıldar, J. van de Vossenberg, E.R. Rene, E.D. van Hullebusch, P.N.L. Lens, Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manage. 57, 149–157 (2016)

    CrossRef  CAS  Google Scholar 

  53. S. Ilyas, J. Lee, Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1, 148–169 (2014)

    CAS  CrossRef  Google Scholar 

  54. H. Brandl, S. Lehmann, M.A. Faramarzi, D. Martinelli, Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94, 14–17 (2008)

    CAS  CrossRef  Google Scholar 

  55. K. Pollmann, S. Kutschke, S. Matys, S. Kostudis, S. Hopfe, J. Raff, Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals 6, 54 (2016)

    CrossRef  CAS  Google Scholar 

  56. B. Max, J.M. Salgado, N. Rodríguez, S. Cortés, A. Converti, J.M. Domínguez, Biotechnological production of citric acid. Braz. J. Microbiol. 41, 862–875 (2010)

    CAS  CrossRef  Google Scholar 

  57. J.-O. Kim, Y.-W. Lee, J. Chung, The role of organic acids in the mobilization of heavy metals from soil. KSCE J. Civ. Eng. 17, 1596–1602 (2013)

    CrossRef  Google Scholar 

  58. Y. Qu, B. Lian, B. Mo, C. Liu, Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 136, 71–77 (2013)

    CAS  CrossRef  Google Scholar 

  59. L. Li, J. Ge, R. Chen, F. Wu, S. Chen, X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manage. 30, 2615–2621 (2010)

    CAS  CrossRef  Google Scholar 

  60. L. Sun, K. Qiu, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage. 32, 1575–1582 (2012)

    CAS  CrossRef  Google Scholar 

  61. S. Ghosh, S. Mohanty, A. Akcil, L.B. Sukla, A.P. Das, A greener approach for resource recycling: manganese bioleaching. Chemosphere 154, 628–639 (2016)

    CAS  CrossRef  Google Scholar 

  62. R.-L. Yu, O.U. Yang, J.-X. Tan, F.-D. Wu, S.U.N. Jing, M. Lei, D.-L. Zhong, Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces. Trans. Nonferrous Met. Soc. China 21, 407–412 (2011)

    CAS  CrossRef  Google Scholar 

  63. W. Zeng, G. Qiu, H. Zhou, X. Liu, M. Chen, W. Chao, C. Zhang, J. Peng, Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy 100, 177–180 (2010)

    CAS  CrossRef  Google Scholar 

  64. K. Bosecker, Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20, 591–604 (1997)

    CAS  CrossRef  Google Scholar 

  65. A. Marra, A. Cesaro, E.R. Rene, V. Belgiorno, P.N.L. Lens, Bioleaching of metals from WEEE shredding dust. J. Environ. Manage. 210, 180–190 (2018)

    CAS  CrossRef  Google Scholar 

  66. L. Zhao, D. Yang, N.-W. Zhu, Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load. J. Hazard. Mater. 160, 648–654 (2008)

    CAS  CrossRef  Google Scholar 

  67. M. Ijadi Bajestani, S.M. Mousavi, S.A. Shojaosadati, Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization. Sep. Purif. Technol. 132, 309–316 (2014)

    CAS  CrossRef  Google Scholar 

  68. F. Gerayeli, F. Ghojavand, S.M. Mousavi, S. Yaghmaei, F. Amiri, Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Sep. Purif. Technol. 118, 151–161 (2013)

    CAS  CrossRef  Google Scholar 

  69. Z. Niu, Y. Zou, B. Xin, S. Chen, C. Liu, Y. Li, Process controls for improving bioleaching performance of both Li and Co from spent lithium-ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere 109, 92–98 (2014)

    CAS  CrossRef  Google Scholar 

  70. S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, R.S. Mamoory, Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans. Hydrometallurgy 157, 50–59 (2015)

    CAS  CrossRef  Google Scholar 

  71. B. Xin, W. Jiang, X. Li, K. Zhang, C. Liu, R. Wang, Y. Wang, Analysis of reasons for decline of bioleaching efficiency of spent Zn–Mn batteries at high pulp densities and exploration measure for improving performance. Bioresour. Technol. 112, 186–192 (2012)

    CAS  CrossRef  Google Scholar 

  72. S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, T. Gu, Bioleaching of fuel-oil ash using Acidithiobacillus thiooxidans in shake flasks and a slurry bubble column bioreactor. RSC Adv. 6, 21756–21764 (2016)

    CAS  CrossRef  Google Scholar 

  73. H. Liu, G. Gu, Y. Xu, Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 108, 143–148 (2011)

    CAS  CrossRef  Google Scholar 

  74. F. Anjum, M. Shahid, S. Bukhari, J.H. Potgieter, Combined ultrasonic and bioleaching treatment of hospital waste incinerator bottom ash with simultaneous extraction of selected metals. Environ. Technol. 35, 262–270 (2014)

    CAS  CrossRef  Google Scholar 

  75. S. Vyas, Y.-P. Ting, A review of the application of ultrasound in bioleaching and insights from sonication in (bio) chemical processes. Resources 7, 3 (2018)

    CrossRef  Google Scholar 

  76. L.H.M. Vargas, A.C.S. Pião, R.N. Domingos, E.C. Carmona, Ultrasound effects on invertase from Aspergillus niger. World J. Microbiol. Biotechnol. 20, 137–142 (2004)

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Tarbiat Modares University under grant number IG-39701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Mohammad Mousavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bahaloo-Horeh, N., Vakilchap, F., Mousavi, S.M. (2019). Bio-hydrometallurgical Methods For Recycling Spent Lithium-Ion Batteries. In: An, L. (eds) Recycling of Spent Lithium-Ion Batteries. Springer, Cham. https://doi.org/10.1007/978-3-030-31834-5_7

Download citation