J.H. Duffus, “ Heavy metals” a meaningless term? (IUPAC technical report). Pure Appl. Chem. 74, 793–807 (2002)
CAS
CrossRef
Google Scholar
Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, B. Xin, Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J. Clean. Prod. 116, 249–258 (2015)
CrossRef
CAS
Google Scholar
N. Bahaloo-Horeh, S.M. Mousavi, S.A. Shojaosadati, Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J. Power Sour. 320, 257–266 (2016)
CrossRef
CAS
Google Scholar
R. Marcincakova, J. Kadukova, A. Mrazikova, O. Velgosova, A. Luptakova, S. Ubaldini, Metal bioleaching from spent lithium-ion batteries using acidophilic bacterial strains. Inżynieria Miner 17, 117–120 (2016)
Google Scholar
G. Zeng, S. Luo, X. Deng, L. Li, C. Au, Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner. Eng. 49, 40–44 (2013)
CAS
CrossRef
Google Scholar
M. Sun, Y. Wang, J. Hong, J. Dai, R. Wang, Z. Niu, B. Xin, Life cycle assessment of a bio-hydrometallurgical treatment of spent Zn-Mn batteries. J. Clean. Prod. 129, 350–358 (2016)
CAS
CrossRef
Google Scholar
B.K. Biswal, U.U. Jadhav, M. Madhaiyan, L. Ji, E.-H. Yang, B. Cao, Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 12343–12352 (2018)
CAS
CrossRef
Google Scholar
D. Mishra, D.-J. Kim, D.E. Ralph, J.-G. Ahn, Y.-H. Rhee, Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 28, 333–338 (2008)
CAS
CrossRef
Google Scholar
N. Bahaloo-Horeh, S.M. Mousavi, Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manage. 60, 666–679 (2017)
CAS
CrossRef
Google Scholar
A.D. Zand, M.A. Abduli, Current situation of used household batteries in Iran and appropriate management policies. Waste Manage. 28, 2085–2090 (2008)
CrossRef
Google Scholar
M. Hartono, M.A. Astrayudha, H. Petrus, W. Budhijanto, H. Sulistyo, Lithium recovery of spent lithium-ion battery using bioleaching from local sources microorganism. Rasayan J Chem 10, 897–903 (2017)
CAS
Google Scholar
W. Zhang, C. Xu, W. He, G. Li, J. Huang, A review on management of spent lithium-ion batteries and strategy for resource recycling of all components from them. Waste Manage. Res. 36, 99–112 (2018)
CAS
CrossRef
Google Scholar
S. Ubaldini, J. Kadukova, A. Mrazikova, P. Fornari, A. Luptakova, R. Marcincakova, P. Pizzichemi, Application of innovative processes for the valorisation of spent alkaline batteries. Chem. Eng. Trans. 39, 1609–1614 (2014)
Google Scholar
Z. Niu, Q. Huang, J. Wang, Y. Yang, B. Xin, S. Chen, Metallic ions catalysis for improving bioleaching yield of Zn and Mn from spent Zn-Mn batteries at high pulp density of 10%. J. Hazard. Mater. 298, 170–177 (2015)
CAS
CrossRef
Google Scholar
K.M. Winslow, S.J. Laux, T.G. Townsend, A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 129, 263–277 (2018)
CrossRef
Google Scholar
J. Lee, B.D. Pandey, Bio-processing of solid wastes and secondary resources for metal extraction–a review. Waste Manage. 32, 3–18 (2012)
CAS
CrossRef
Google Scholar
M.-J. Kim, J.-Y. Seo, Y.-S. Choi, G.-H. Kim, Bioleaching of spent Zn–Mn or Ni-Cd batteries by Aspergillus species. Waste Manage. 51, 168–173 (2016)
CAS
CrossRef
Google Scholar
L.-P. He, S.-Y. Sun, X.-F. Song, J.-G. Yu, Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Manage. 64, 171–181 (2017)
CAS
CrossRef
Google Scholar
S. Bindschedler, T.Q.T.V. Bouquet, D. Job, E. Joseph, P. Junier, Fungal biorecovery of gold from e-waste. Adv. Appl. Microbiol. Elsevier, 53–81 (2017)
Google Scholar
N. Bahaloo-Horeh, S.M. Mousavi, M. Baniasadi, Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J. Clean. Prod. 197, 1546–1557 (2018)
CAS
CrossRef
Google Scholar
J. Dewulf, G. Van der Vorst, K. Denturck, H. Van Langenhove, W. Ghyoot, J. Tytgat, K. Vandeputte, Recycling rechargeable lithium-ion batteries: critical analysis of natural resource savings. Resour. Conserv. Recycl. 54, 229–234 (2010)
CrossRef
Google Scholar
B. Xin, W. Jiang, H. Aslam, K. Zhang, C. Liu, R. Wang, Y. Wang, Bioleaching of zinc and manganese from spent Zn–Mn batteries and mechanism exploration. Bioresour. Technol. 106, 147–153 (2012)
CAS
CrossRef
Google Scholar
A.M. Diederen, Metal minerals scarcity: a call for managed austerity and the elements of hope (Saf, TNO Defence, Secur, 2009)
Google Scholar
A. Akcil, F. Vegliò, F. Ferella, M.D. Okudan, A. Tuncuk, A review of metal recovery from spent petroleum catalysts and ash. Waste Manage. 45, 420–433 (2015)
CAS
CrossRef
Google Scholar
O. Velgosová, J. Kaduková, R. Marcinčáková, A. Mražíková, L. Fröhlich, The role of main leaching agents responsible for Ni bioleaching from spent Ni-Cd batteries. Sep. Sci. Technol. 49, 438–444 (2014)
CrossRef
CAS
Google Scholar
C. Cerruti, G. Curutchet, E. Donati, Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. J. Biotechnol. 62, 209–219 (1998)
CAS
CrossRef
Google Scholar
N.J. Boxall, K.Y. Cheng, W. Bruckard, A.H. Kaksonen, Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J. Hazard. Mater. 360, 504–511 (2018)
CAS
CrossRef
Google Scholar
O. Velgosová, J. Kaduková, R. Marcinčáková, Study of Ni and Cd bioleaching from spent Ni-Cd batteries. Nov. Biotechnol. Chim. 11, 117–123 (2012)
CrossRef
CAS
Google Scholar
A. Heydarian, S.M. Mousavi, F. Vakilchap, M. Baniasadi, Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J. Power Sour. 378, 19–30 (2018)
CAS
CrossRef
Google Scholar
A. Işıldar, Biotechnologies for metal recovery from electronic waste and printed circuit boards. Waste Electr. Electron. Equip. Recycl. Elsevier, 241–269 (2018)
Google Scholar
F. Beolchini, V. Fonti, A. Dell’Anno, L. Rocchetti, F. Vegliò, Assessment of biotechnological strategies for the valorization of metal bearing wastes. Waste Manage. 32, 949–956 (2012)
CAS
CrossRef
Google Scholar
D. Mishra, Y.H. Rhee, Microbial leaching of metals from solid industrial wastes. J. Microbiol. 52, 1–7 (2014)
CAS
CrossRef
Google Scholar
A. Pathak, L. Morrison, M.G. Healy, Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: a critical review. Bioresour. Technol. 229, 211–221 (2017)
CAS
CrossRef
Google Scholar
T. Gu, S.O. Rastegar, S.M. Mousavi, M. Li, M. Zhou, Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour. Technol. 261, 428–440 (2018)
CAS
CrossRef
Google Scholar
H. Brandl, Microbial leaching of metals. Biotechnol. Set. 191–224 (2008) (Second Ed)
Google Scholar
M.E. Hoque, O.J. Philip, Biotechnological recovery of heavy metals from secondary sources—An overview. Mater. Sci. Eng. C 31, 57–66 (2011)
CAS
CrossRef
Google Scholar
D. Santhiya, Y.-P. Ting, Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. J. Biotechnol. 121, 62–74 (2006)
CAS
CrossRef
Google Scholar
A. Potysz, E.D. van Hullebusch, J. Kierczak, Perspectives regarding the use of metallurgical slags as secondary metal resources–a review of bioleaching approaches. J. Environ. Manage. 219, 138–152 (2018)
CAS
CrossRef
Google Scholar
I. Asghari, S.M. Mousavi, F. Amiri, S. Tavassoli, Bioleaching of spent refinery catalysts: a review. J. Ind. Eng. Chem. 19, 1069–1081 (2013)
CAS
CrossRef
Google Scholar
K. Pollmann, S. Kutschke, S. Matys, J. Raff, G. Hlawacek, F.L. Lederer, Bio-recycling of metals: recycling of technical products using biological applications. Biotechnol. Adv. 36, 1048–1062 (2018)
CAS
CrossRef
Google Scholar
G. Zeng, X. Deng, S. Luo, X. Luo, J. Zou, A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J. Hazard. Mater. 199–200, 164–169 (2012)
CrossRef
CAS
Google Scholar
A. Işıldar, E.D. van Hullebusch, M. Lenz, G. Du Laing, A. Marra, A. Cesaro, S. Panda, A. Akcil, M.A. Kucuker, K. Kuchta, Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)–A review. J. Hazard. Mater. 362, 467–481 (2019)
CrossRef
CAS
Google Scholar
J. Wang, B. Tian, Y. Bao, C. Qian, Y. Yang, T. Niu, B. Xin, Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1−x−yO2 Li-ion batteries. J. Hazard. Mater. 354, 250–257 (2018)
CAS
CrossRef
Google Scholar
B. Xin, D. Zhang, X. Zhang, Y. Xia, F. Wu, S. Chen, L. Li, Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour. Technol. 100, 6163–6169 (2009)
CAS
CrossRef
Google Scholar
A.H. Kaksonen, C. Morris, J. Wylie, J. Li, K. Usher, F. Hilario, C.A. du Plessis, Continuous flow 70 °C archaeal bioreactor for iron oxidation and jarosite precipitation. Hydrometallurgy 168, 40–48 (2017)
CAS
CrossRef
Google Scholar
F. Anjum, M. Shahid, A. Akcil, Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117, 1–12 (2012)
CrossRef
CAS
Google Scholar
J.D. Garcia-Garcia, R. Sanchez-Thomas, R. Moreno-Sanchez, Bio-recovery of non-essential heavy metals by intra-and extracellular mechanisms in free-living microorganisms. Biotechnol. Adv. 34, 859–873 (2016)
CAS
CrossRef
Google Scholar
C.J. Liang, J.Y. Li, C.J. Ma, Review on cyanogenic bacteria for gold recovery from e-waste. Adv. Mater. Res. 878, 355–367 (2014)
CrossRef
CAS
Google Scholar
M. Motaghed, S.M. Mousavi, S.O. Rastegar, S.A. Shojaosadati, Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization. Bioresour. Technol. 171, 401–409 (2014)
CAS
CrossRef
Google Scholar
Y. Lu, Z. Xu, Precious metals recovery from waste printed circuit boards: a review for current status and perspective. Resour. Conserv. Recycl. 113, 28–39 (2016)
CrossRef
Google Scholar
M. Arshadi, S.M. Mousavi, Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour. Technol. 174, 233–242 (2014)
CAS
CrossRef
Google Scholar
A. Işıldar, J. van de Vossenberg, E.R. Rene, E.D. van Hullebusch, P.N.L. Lens, Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manage. 57, 149–157 (2016)
CrossRef
CAS
Google Scholar
S. Ilyas, J. Lee, Biometallurgical recovery of metals from waste electrical and electronic equipment: a review. ChemBioEng Rev 1, 148–169 (2014)
CAS
CrossRef
Google Scholar
H. Brandl, S. Lehmann, M.A. Faramarzi, D. Martinelli, Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94, 14–17 (2008)
CAS
CrossRef
Google Scholar
K. Pollmann, S. Kutschke, S. Matys, S. Kostudis, S. Hopfe, J. Raff, Novel biotechnological approaches for the recovery of metals from primary and secondary resources. Minerals 6, 54 (2016)
CrossRef
CAS
Google Scholar
B. Max, J.M. Salgado, N. Rodríguez, S. Cortés, A. Converti, J.M. Domínguez, Biotechnological production of citric acid. Braz. J. Microbiol. 41, 862–875 (2010)
CAS
CrossRef
Google Scholar
J.-O. Kim, Y.-W. Lee, J. Chung, The role of organic acids in the mobilization of heavy metals from soil. KSCE J. Civ. Eng. 17, 1596–1602 (2013)
CrossRef
Google Scholar
Y. Qu, B. Lian, B. Mo, C. Liu, Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 136, 71–77 (2013)
CAS
CrossRef
Google Scholar
L. Li, J. Ge, R. Chen, F. Wu, S. Chen, X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manage. 30, 2615–2621 (2010)
CAS
CrossRef
Google Scholar
L. Sun, K. Qiu, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage. 32, 1575–1582 (2012)
CAS
CrossRef
Google Scholar
S. Ghosh, S. Mohanty, A. Akcil, L.B. Sukla, A.P. Das, A greener approach for resource recycling: manganese bioleaching. Chemosphere 154, 628–639 (2016)
CAS
CrossRef
Google Scholar
R.-L. Yu, O.U. Yang, J.-X. Tan, F.-D. Wu, S.U.N. Jing, M. Lei, D.-L. Zhong, Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces. Trans. Nonferrous Met. Soc. China 21, 407–412 (2011)
CAS
CrossRef
Google Scholar
W. Zeng, G. Qiu, H. Zhou, X. Liu, M. Chen, W. Chao, C. Zhang, J. Peng, Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate. Hydrometallurgy 100, 177–180 (2010)
CAS
CrossRef
Google Scholar
K. Bosecker, Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 20, 591–604 (1997)
CAS
CrossRef
Google Scholar
A. Marra, A. Cesaro, E.R. Rene, V. Belgiorno, P.N.L. Lens, Bioleaching of metals from WEEE shredding dust. J. Environ. Manage. 210, 180–190 (2018)
CAS
CrossRef
Google Scholar
L. Zhao, D. Yang, N.-W. Zhu, Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load. J. Hazard. Mater. 160, 648–654 (2008)
CAS
CrossRef
Google Scholar
M. Ijadi Bajestani, S.M. Mousavi, S.A. Shojaosadati, Bioleaching of heavy metals from spent household batteries using Acidithiobacillus ferrooxidans: Statistical evaluation and optimization. Sep. Purif. Technol. 132, 309–316 (2014)
CAS
CrossRef
Google Scholar
F. Gerayeli, F. Ghojavand, S.M. Mousavi, S. Yaghmaei, F. Amiri, Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Sep. Purif. Technol. 118, 151–161 (2013)
CAS
CrossRef
Google Scholar
Z. Niu, Y. Zou, B. Xin, S. Chen, C. Liu, Y. Li, Process controls for improving bioleaching performance of both Li and Co from spent lithium-ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere 109, 92–98 (2014)
CAS
CrossRef
Google Scholar
S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, R.S. Mamoory, Bioleaching of V, Ni, and Cu from residual produced in oil fired furnaces using Acidithiobacillus ferrooxidans. Hydrometallurgy 157, 50–59 (2015)
CAS
CrossRef
Google Scholar
B. Xin, W. Jiang, X. Li, K. Zhang, C. Liu, R. Wang, Y. Wang, Analysis of reasons for decline of bioleaching efficiency of spent Zn–Mn batteries at high pulp densities and exploration measure for improving performance. Bioresour. Technol. 112, 186–192 (2012)
CAS
CrossRef
Google Scholar
S.O. Rastegar, S.M. Mousavi, S.A. Shojaosadati, T. Gu, Bioleaching of fuel-oil ash using Acidithiobacillus thiooxidans in shake flasks and a slurry bubble column bioreactor. RSC Adv. 6, 21756–21764 (2016)
CAS
CrossRef
Google Scholar
H. Liu, G. Gu, Y. Xu, Surface properties of pyrite in the course of bioleaching by pure culture of Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometallurgy 108, 143–148 (2011)
CAS
CrossRef
Google Scholar
F. Anjum, M. Shahid, S. Bukhari, J.H. Potgieter, Combined ultrasonic and bioleaching treatment of hospital waste incinerator bottom ash with simultaneous extraction of selected metals. Environ. Technol. 35, 262–270 (2014)
CAS
CrossRef
Google Scholar
S. Vyas, Y.-P. Ting, A review of the application of ultrasound in bioleaching and insights from sonication in (bio) chemical processes. Resources 7, 3 (2018)
CrossRef
Google Scholar
L.H.M. Vargas, A.C.S. Pião, R.N. Domingos, E.C. Carmona, Ultrasound effects on invertase from Aspergillus niger. World J. Microbiol. Biotechnol. 20, 137–142 (2004)
CAS
CrossRef
Google Scholar