LoRaWAN SCHC Fragmentation Demystified

  • Sergio AguilarEmail author
  • Alexandre Marquet
  • Laurent Toutain
  • Carles Gomez
  • Rafael Vidal
  • Nicolas Montavont
  • Georgios Z. Papadopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11803)


Low Power Wide Area Networks (LPWANs) have emerged as new networks for Internet of Things (IoT). LPWANs are characterized by long-range communications and low energy consumption. Furthermore, LPWAN technologies have a small data unit and do not provide a fragmentation mechanism. To enable these technologies to support IPv6 and, thus, be compliant with the IPv6 Maximum Transmission Unit (MTU) of 1280 bytes, the LPWAN Working Group (WG) of the Internet Engineering Task Force (IETF) has defined a new framework called Static Context Header Compression (SCHC). SCHC includes Fragmentation/Reassembly (F/R) functionality for transmitting larger packet sizes than the layer 2 MTU that the underlying LPWAN technology offers and a header compression mechanism. Moreover, SCHC defines three operational modes to perform the F/R process: No-ACK, ACK-Always and ACK-on-Error. Each mode provides different reliability levels and mechanisms. In this paper, we provide an overview of the SCHC F/R modes and evaluate their trade-offs over LoRaWAN by simulations. The analyzed parameters are the total channel occupancy, goodput and total delay at the SCHC layer. The results of our analysis show that No-ACK mode is the method with lowest total channel occupancy, highest goodput and lower total delay, but lacks a reliability mechanism. ACK-Always and ACK-on-Error modes offer the same total delay, and similar total channel occupancy, whereas ACK-on-Error offers greater goodput.


LPWAN SCHC Fragmentation LoRAWAN IoT Duty-cycle Reliability Standardization IETF LoRa IPv6 


  1. 1.
    Abdelfadeel, K.Q., Cionca, V., Pesch, D.: LSCHC: layered static context header compression for LPWANs. In: Tarkoma, S., Wolf, L.C. (eds.) CHANTS Workshop at MOBICOM, pp. 13–18. ACM (2017).
  2. 2.
    Angrisani, L., Arpaia, P., Bonavolontà, F., Conti, M., Liccardo, A.: LoRa protocol performance assessment in critical noise conditions. In: 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), pp. 1–5, September 2017.
  3. 3.
    Ayoub, W., Nouvel, F., Hmede, S., Samhat, A.E., Mroue, M., Prévotet, J.C.: Implementation of SCHC in NS-3 simulator and comparison with 6LoWPAN. In: 26th International Conference on Telecommunications (ICT), HANOI, Vietnam, April 2019Google Scholar
  4. 4.
    Casals, L., Mir, B., Vidal, R., Gomez, C.: Modeling the energy performance of LoRaWAN. Sensors 17(10), 2364 (2017)CrossRefGoogle Scholar
  5. 5.
    Gomez, C., Paradells, J., Bormann, C., Crowcroft, J.: From 6LoWPAN to 6Lo: expanding the universe of IPv6-supported technologies for the Internet of Things. IEEE Commun. Mag. 55(12), 148–155 (2017). Scholar
  6. 6.
    Kim, E., Kaspar, D., Gomez, C., Bormann, C.: Problem statement and requirements for IPv6 over low-power wireless personal area network (6LoWPAN) routing. RFC 6606, RFC Editor, May 2012Google Scholar
  7. 7.
    Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. IETF RFC 4919, August 2007Google Scholar
  8. 8.
    Minaburo, A., Toutain, L., Gomez, C., Barthel, D., Zuniga, J.: LPWAN static context header compression (SCHC) and fragmentation for IPv6 and UDP. Internet-Draft draft-ietf-lpwan-ipv6-static-context-hc-18, IETF Secretariat, December 2018Google Scholar
  9. 9.
    Montenegro, G., Kushalnagar, N., Culler, D.: Transmission of IPv6 packets over IEEE 802.15.4 networks. RFC 4944, September 2007Google Scholar
  10. 10.
    Moons, B., Karaağaç, A., Haxhibeqiri, J., De Poorter, E., Hoebeke, J.: Using SCHC for an optimized protocol stack in multimodal LPWAN solutions. In: WF-IoT2019, the IEEE World Forum on Internet of Things, pp. 1–6 (2019)Google Scholar
  11. 11.
  12. 12.
    Papadopoulos, G., Thubert, P., Tsakalidis, S., Montavont, N.: RFC 4944: per-hop fragmentation and reassembly issues. In: IEEE CSCN. Paris, France, October 2018Google Scholar
  13. 13.
    Petrić, T., Goessens, M., Nuaymi, L., Toutain, L., Pelov, A.: Measurements, performance and analysis of LoRa FABIAN, a real-world implementation of LPWAN. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–7, September 2016.
  14. 14.
    Rahman, A., Suryanegara, M.: The development of IoT LoRa: a performance evaluation on LoS and Non-LoS environment at 915 MHz ISM frequency. In: 2017 International Conference on Signals and Systems (ICSigSys), pp. 163–167, May 2017.
  15. 15.
    Semtech: SX1272/3/6/7/8: LoRa Modem Designer’s Guide AN1200.13, July 2013. Accessed 21 May 2019
  16. 16.
    Singh, D., Aliu, O.G., Kretschmer, M.: LoRa WanEvaluation for IoT communications. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 163–171, September 2018.
  17. 17.
    Suciu, I., Vilajosana, X., Adelantado, F.: An analysis of packet fragmentation impact in LPWAN. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain (2018)Google Scholar
  18. 18.
    Zorbas, D., Papadopoulos, G.Z., Maille, P., Montavont, N., Douligeris, C.: Improving LoRa network capacity using multiple spreading factor configurations. In: Proceedings of the 25th International Conference on Telecommunication (ICT), pp. 516–520 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergio Aguilar
    • 1
    Email author
  • Alexandre Marquet
    • 2
  • Laurent Toutain
    • 2
  • Carles Gomez
    • 1
  • Rafael Vidal
    • 1
  • Nicolas Montavont
    • 2
  • Georgios Z. Papadopoulos
    • 2
  1. 1.Universitat Politécnica de CatalunyaBarcelonaSpain
  2. 2.IMT Atlantique, IRISARennesFrance

Personalised recommendations