Abstract
The paper presents a new tool ltl3tela translating LTL to deterministic or nondeterministic transition-based Emerson-Lei automata (TELA). Emerson-Lei automata use generic acceptance formulae with basic terms corresponding to Büchi and co-Büchi acceptance. The tool combines algorithms of Spot library, a new translation of LTL to TELA via alternating automata, a pattern-based automata reduction method, and few other heuristics. Experimental evaluation shows that ltl3tela can produce deterministic automata that are, on average, noticeably smaller than deterministic TELA produced by state-of-the-art translators Delag, Rabinizer 4, and Spot. For nondeterministic automata, the improvement over Spot is smaller, but still measurable.
J. Major and J. Strejček have been supported by Czech Science Foundation, grant GA19-24397S. F. Blahoudek has been supported by F.R.S.-FNRS under Grant n\(^\circ \) F.4520.18 (ManySynth).
This is a preview of subscription content, access via your institution.
Buying options
Notes
- 1.
We use the tools randltl, genltl, and ltlcross [6] from the Spot library 2.7.4.
References
Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_8
Babiak, T., Badie, T., Duret-Lutz, A., Křetínský, M., Strejček, J.: Compositional approach to suspension and other improvements to LTL translation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 81–98. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39176-7_6
Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31
Baier, C., Blahoudek, F., Duret-Lutz, A., Klein, J., Müller, D., Strejček, J.: Generic emptiness check for fun and profit. In: Proceedings of ATVA 2019 (2019, to appear)
Dax, C., Eisinger, J., Klaedtke, F.: Mechanizing the powerset construction for restricted classes of \(\omega \)-automata. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 223–236. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8_17
Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_31
Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8
Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)
Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_6
Křetínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_30
Major, J.: Translation of LTL into nondeterministic automata with generic acceptance condition. Master’s thesis, Masaryk University, Brno (2017)
Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Proceedings Eighth International Symposium on Games, Automata, Logics and Formal Verification (GandALF). EPTCS, vol. 256, pp. 180–194 (2017). http://arxiv.org/abs/1709.02102
Redziejowski, R.R.: An improved construction of deterministic omega-automaton using derivatives. Fundam. Inf. 119(3–4), 393–406 (2012)
Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_21
Zbončáková, T.: Redukce omega-automatů s využitím Emerson-Lei akceptační podmínky. Bachelor’s thesis, Masaryk University, Brno (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Major, J., Blahoudek, F., Strejček, J., Sasaráková, M., Zbončáková, T. (2019). ltl3tela: LTL to Small Deterministic or Nondeterministic Emerson-Lei Automata. In: Chen, YF., Cheng, CH., Esparza, J. (eds) Automated Technology for Verification and Analysis. ATVA 2019. Lecture Notes in Computer Science(), vol 11781. Springer, Cham. https://doi.org/10.1007/978-3-030-31784-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-31784-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31783-6
Online ISBN: 978-3-030-31784-3
eBook Packages: Computer ScienceComputer Science (R0)