Skip to main content

ltl3tela: LTL to Small Deterministic or Nondeterministic Emerson-Lei Automata

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 11781)

Abstract

The paper presents a new tool ltl3tela translating LTL to deterministic or nondeterministic transition-based Emerson-Lei automata (TELA). Emerson-Lei automata use generic acceptance formulae with basic terms corresponding to Büchi and co-Büchi acceptance. The tool combines algorithms of Spot library, a new translation of LTL to TELA via alternating automata, a pattern-based automata reduction method, and few other heuristics. Experimental evaluation shows that ltl3tela can produce deterministic automata that are, on average, noticeably smaller than deterministic TELA produced by state-of-the-art translators Delag, Rabinizer 4, and Spot. For nondeterministic automata, the improvement over Spot is smaller, but still measurable.

J. Major and J. Strejček have been supported by Czech Science Foundation, grant GA19-24397S. F. Blahoudek has been supported by F.R.S.-FNRS under Grant n\(^\circ \) F.4520.18 (ManySynth).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-31784-3_21
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-31784-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Notes

  1. 1.

    We use the tools randltl, genltl, and ltlcross [6] from the Spot library 2.7.4.

References

  1. Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_8

    CrossRef  MATH  Google Scholar 

  2. Babiak, T., Badie, T., Duret-Lutz, A., Křetínský, M., Strejček, J.: Compositional approach to suspension and other improvements to LTL translation. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 81–98. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39176-7_6

    CrossRef  Google Scholar 

  3. Babiak, T., et al.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_31

    CrossRef  Google Scholar 

  4. Baier, C., Blahoudek, F., Duret-Lutz, A., Klein, J., Müller, D., Strejček, J.: Generic emptiness check for fun and profit. In: Proceedings of ATVA 2019 (2019, to appear)

    CrossRef  Google Scholar 

  5. Dax, C., Eisinger, J., Klaedtke, F.: Mechanizing the powerset construction for restricted classes of \(\omega \)-automata. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 223–236. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8_17

    CrossRef  MATH  Google Scholar 

  6. Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_31

    CrossRef  Google Scholar 

  7. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0—a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

    CrossRef  Google Scholar 

  8. Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

    CrossRef  MathSciNet  Google Scholar 

  9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_6

    CrossRef  Google Scholar 

  10. Křetínský, J., Meggendorfer, T., Sickert, S., Ziegler, C.: Rabinizer 4: from LTL to your favourite deterministic automaton. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 567–577. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_30

    CrossRef  Google Scholar 

  11. Major, J.: Translation of LTL into nondeterministic automata with generic acceptance condition. Master’s thesis, Masaryk University, Brno (2017)

    Google Scholar 

  12. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: Proceedings Eighth International Symposium on Games, Automata, Logics and Formal Verification (GandALF). EPTCS, vol. 256, pp. 180–194 (2017). http://arxiv.org/abs/1709.02102

    CrossRef  MathSciNet  Google Scholar 

  13. Redziejowski, R.R.: An improved construction of deterministic omega-automaton using derivatives. Fundam. Inf. 119(3–4), 393–406 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_21

    CrossRef  Google Scholar 

  15. Zbončáková, T.: Redukce omega-automatů s využitím Emerson-Lei akceptační podmínky. Bachelor’s thesis, Masaryk University, Brno (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Strejček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Major, J., Blahoudek, F., Strejček, J., Sasaráková, M., Zbončáková, T. (2019). ltl3tela: LTL to Small Deterministic or Nondeterministic Emerson-Lei Automata. In: Chen, YF., Cheng, CH., Esparza, J. (eds) Automated Technology for Verification and Analysis. ATVA 2019. Lecture Notes in Computer Science(), vol 11781. Springer, Cham. https://doi.org/10.1007/978-3-030-31784-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31784-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31783-6

  • Online ISBN: 978-3-030-31784-3

  • eBook Packages: Computer ScienceComputer Science (R0)