Skip to main content

Cariology

Part of the Textbooks in Contemporary Dentistry book series (TECD)

Abstract

Caries is a disease resulting from bacterial and nutritional imbalances, which favor caries lesion development. The chapter describes the respective risk factors, the role of the microorganisms, and the protective effect of saliva on the lesion start and progression. The action of fluoride on the enamel demineralization and remineralization process is described, as well the various options to convert active caries lesions into inactive ones. The characteristics of the lesions on different tooth surface are presented, and the methods for caries diagnosis are introduced and judged. The ICDAS II system is described.

Keywords

  • Caries lesions
  • Caries risk
  • Caries diagnosis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-31772-0_3
  • Chapter length: 45 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-31772-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16
Fig. 3.17
Fig. 3.18
Fig. 3.19
Fig. 3.20
Fig. 3.21
Fig. 3.22
Fig. 3.23
Fig. 3.24
Figs. 3.25 and 3.26
Fig. 3.27
Fig. 3.28
Fig. 3.29
Fig. 3.30
Fig. 3.31
Fig. 3.32
Fig. 3.33
Fig. 3.34
Fig. 3.35
Fig. 3.36
Fig. 3.37
Fig. 3.38
Fig. 3.39
Fig. 3.40
Fig. 3.41
Fig. 3.42
Fig. 3.43
Fig. 3.44
Fig. 3.45
Fig. 3.46
Fig. 3.47
Fig. 3.48
Fig. 3.49
Fig. 3.50
Fig. 3.51
Fig. 3.52

References

  1. Abrams SH, Sivagurunathan KS, Silvertown JD, Wong B, Hellen A, Mandelis A, et al. Correlation with caries lesion depth of the canary system, DIAGNOdent and ICDAS II. Open Dent J. 2017;11:679–89. https://doi.org/10.2174/1874210601711010679.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Adams AB. Caries risk assessment. Chronicle. 1995;58:10–3.

    PubMed  Google Scholar 

  3. Akpata ES, Farid MR, Al-Saif K, Roberts EAU. Cavitation at radiolucent areas on proximal surfaces of posterior teeth. Caries Res [Internet]. 1996;30:313–6. https://doi.org/10.1159/000262336.

    CrossRef  Google Scholar 

  4. Alaluusua S, Savolainen J, Tuompo H, Grönroos L. Slide-scoring method for estimation of Streptococcus mutans levels in saliva. Scand J Dent Res. 1984;92:127–33.

    PubMed  Google Scholar 

  5. Angmar-Månsson B, ten Bosch JJ. Optical methods for the detection and quantification of caries. Adv Dent Res. 1987;1:14–20. https://doi.org/10.1177/08959374870010010601.

    CrossRef  PubMed  Google Scholar 

  6. Angmar-Månsson BE, Al-Khateeb S, Tranaeus S. Caries diagnosis. J Dent Educ. 1998;62:771–80.

    PubMed  Google Scholar 

  7. Smith A(T)J, Cooper PR. Cellular signaling in dentin repair and regeneration. In: Vishwakarma A, Sharpe P, Shi S, Wang X-P, editors. Stem cell biology and tissue engineering in dental sciences: Elsevier; 2015. p. 405–17.

    Google Scholar 

  8. Anusavice KJ. Management of dental caries as a chronic infectious disease. J Dent Educ. 1998;62:791–802.

    PubMed  Google Scholar 

  9. Anusavice KJ. Present and future approaches for the control of caries. J Dent Educ. 2005;69:538–54.

    PubMed  Google Scholar 

  10. Astvaldsdóttir A, Ahlund K, Holbrook WP, de Verdier B, Tranæus S. Approximal caries detection by DIFOTI: in vitro comparison of diagnostic accuracy/efficacy with film and digital radiography. Int J Dent. 2012;2012:326401. https://doi.org/10.1155/2012/326401.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Axelsson P. Diagnosis and risk prediction of dental caries. Chicago: Quintessence; 2000.

    Google Scholar 

  12. Ball IA. The “fluoride syndrome”: occult caries? Br Dent J. 1986;160:75–6.

    PubMed  Google Scholar 

  13. Baratieri LN. Dentística. Procedimentos preventivos e restauradores. 2nd ed. Santos; 1993.

    Google Scholar 

  14. Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J Dent Res. 1989;68:773–9. https://doi.org/10.1177/00220345890680050401.

    CrossRef  PubMed  Google Scholar 

  15. Carvalho JC, Ekstrand KR, Thylstrup A. Results after 1 year of non-operative occlusal caries treatment of erupting permanent first molars. Community Dent Oral Epidemiol. 1991;19:23–8.

    PubMed  Google Scholar 

  16. Carvalho JC, Thylstrup A, Ekstrand KR. Results after 3 years of non-operative occlusal caries treatment of erupting permanent first molars. Community Dent Oral Epidemiol. 1992;20:187–92.

    PubMed  Google Scholar 

  17. Cury JA. Uso do flúor e controle da cárie como doença. In: Baratieri LN, editor. Odontol restauradora Fundam e Possibilidades. São Paulo: Santos; 2001. p. 33–68.

    Google Scholar 

  18. Darling AI. The pathology and prevention of caries. Br Dent J. 1959;107:287–96.

    Google Scholar 

  19. Denis M, Atlan A, Vennat E, Tirlet G, Attal J-P. White defects on enamel: diagnosis and anatomopathology: two essential factors for proper treatment (part 1). Int Orthod. 2013;11:139–65. https://doi.org/10.1016/j.ortho.2013.02.014.

    CrossRef  PubMed  Google Scholar 

  20. Dikmen B. ICDAS II Criteria (International Caries Detection and Assessment System). J Istanbul Univ Fac Dent. 2015;49:63. https://doi.org/10.17096/jiufd.38691.

    CrossRef  Google Scholar 

  21. van Dorp CS, Exterkate RA, ten Cate JM. The effect of dental probing on subsequent enamel demineralization. ASDC J Dent Child. 1988;55:343–7.

    PubMed  Google Scholar 

  22. Edelstein BL, Ureles SD, Smaldone A. Very high salivary Streptococcus mutans predicts caries progression in young children. Pediatr Dent. 2016;38(4):325–30.

    PubMed  Google Scholar 

  23. Ekstrand KR, Kuzmina I, Bjørndal L, Thylstrup A. Relationship between external and histologic features of progressive stages of caries in the occlusal fossa. Caries Res. 1995;29:243–50. https://doi.org/10.1159/000262076.

    CrossRef  PubMed  Google Scholar 

  24. Ekstrand K, Qvist V, Thylstrup A. Light microscope study of the effect of probing in occlusal surfaces. Caries Res. 1987;21:368–74. https://doi.org/10.1159/000261041.

    CrossRef  PubMed  Google Scholar 

  25. Fejerskov O, Baelum V, Ostergaard ES. Root caries in Scandinavia in the 1980’s and future trends to be expected in dental caries experience in adults. Adv Dent Res. 1993;7:4–14. https://doi.org/10.1177/08959374930070010501.

    CrossRef  PubMed  Google Scholar 

  26. Fejerskov O, Manji F. Risk assessment in dental caries. In: Bader JD, editor. Risk assess dent. Chapel Hill: University of North Carolina Dental College; 1990. p. 214–7.

    Google Scholar 

  27. Fejerskov O, Kidd EAM. Dental caries: the disease and its clinical management: Blackwell Munksgaard; 2008.

    Google Scholar 

  28. Ferreira-Zandoná A. A detecção de lesões cariosas através da fluorescência. Rev ABO-PR. 2001;2:22.

    Google Scholar 

  29. Firestone AR, Sema D, Heaven TJ, Weems RA. The effect of a knowledge-based, image analysis and clinical decision support system on observer performance in the diagnosis of approximal caries from radiographic images. Caries Res. 1998;32:127–34. https://doi.org/10.1159/000016442.

    CrossRef  PubMed  Google Scholar 

  30. Fitzgerald RJ, Keyes PH. Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc. 1960;61:9–19.

    PubMed  Google Scholar 

  31. Forgie AH, Pine CM, Pitts NB. The use of magnification in a preventive approach to caries detection. Quintessence Int. 2002;33:13–6.

    PubMed  Google Scholar 

  32. Forner Navarro L, Llena Puy MC, García Godoy F. Diagnostic performance of radiovisiography in combination with a diagnosis assisting program versus conventional radiography and radiovisiography in basic mode and with magnification. Med Oral Patol Oral Cir Bucal. 2008;13:E261–5.

    PubMed  Google Scholar 

  33. Fox PC, van der Ven PF, Sonies BC, Weiffenbach JM, Baum BJ. Xerostomia: evaluation of a symptom with increasing significance. J Am Dent Assoc. 1985;110:519–25.

    PubMed  Google Scholar 

  34. Fried D, Glena RE, Featherstone JD, Seka W. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths. Appl Optics. 1995;34:1278–85. https://doi.org/10.1364/AO.34.001278.

    CrossRef  Google Scholar 

  35. Gakenheimer DC. The efficacy of a computerized caries detector in intraoral digital radiography. J Am Dent Assoc. 2002;133:883–90.

    PubMed  Google Scholar 

  36. Gibbons RJ, Depaola PF, Spinell DM, Skobe Z. Interdental localization of Streptococcus mutans as related to dental caries experience. Infect Immunity. 1974;9:481–8.

    Google Scholar 

  37. Goldberg J, Tanzer J, Munster E, Amara J, Thal F, Birkhed D. Cross-sectional clinical evaluation of recurrent enamel caries, restoration of marginal integrity, and oral hygiene status. J Am Dent Assoc. 1981;102:635–41.

    PubMed  Google Scholar 

  38. Hall A, Girkin JM. A review of potential new diagnostic modalities for caries lesions. J Dent Res. 2004;83. Spec: C89–94.

    PubMed  Google Scholar 

  39. Hamilton IR. Biochemical effects of fluoride on oral bacteria. J Dent Res. 1990;69:660–7. https://doi.org/10.1177/00220345900690S128.

    CrossRef  PubMed  Google Scholar 

  40. Heaven TJ, Weems RA, Firestone AR. The use of a computer-based image analysis program for the diagnosis of approximal caries from bitewing radiographs. Caries Res. 1994;28:55–8. https://doi.org/10.1159/000261621.

    CrossRef  PubMed  Google Scholar 

  41. Hemadi AS, Huang R, Zhou Y, Zou J. Salivary proteins and microbiota as biomarkers for early childhood caries risk assessment. Int J Oral Sci. 2017;9:e1. https://doi.org/10.1038/ijos.2017.35.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Hillman J, Socransky S. The theory and application of bacterial interference to oral diseases. In: Myers HM, editor. New biotechnology in oral research. Basel: Kager; 1990. p. 1–17.

    Google Scholar 

  43. Hintze H, Wenzel A, Danielsen B, Nyvad B. Reliability of visual examination, fibre-optic transillumination, and bite-wing radiography, and reproducibility of direct visual examination following tooth separation for the identification of cavitated carious lesions in contacting approximal surfaces. Caries Res [Internet]. 1998;32:204–9. https://doi.org/10.1159/000016454.

    CrossRef  Google Scholar 

  44. van Houte J. Microbiological predictors of caries risk. Adv Dent Res. 1993;7:87–96. https://doi.org/10.1177/08959374930070022001.

    CrossRef  PubMed  Google Scholar 

  45. Huysmans MC, Longbottom C, Pitts N. Electrical methods in occlusal caries diagnosis: an in vitro comparison with visual inspection and bite-wing radiography. Caries Res. 1998;32:324–9. https://doi.org/10.1159/000016467.

    CrossRef  PubMed  Google Scholar 

  46. Ivar Andreas M. Reaction patterns in human teeth: CRC Press; 1983.

    Google Scholar 

  47. Jablonski-Momeni A, Jablonski B, Lippe N. Clinical performance of the near-infrared imaging system VistaCam iX Proxi for detection of approximal enamel lesions. BDJ open. 2017;3:17012. https://doi.org/10.1038/bdjopen.2017.12.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Jay P. The reduction of oral Lactobacillus acidophilus counts by the periodic restriction of carbohydrate. Am J Orthod. 1947;33:162–84.

    PubMed  Google Scholar 

  49. Jeon RJ, Mandelis A, Sanchez V, Abrams SH. Nonintrusive, noncontacting frequency-domain photothermal radiometry and luminescence depth profilometry of carious and artificial subsurface lesions in human teeth. J Biomed Opt. 2004;9:804–19. https://doi.org/10.1117/1.1755234.

    CrossRef  PubMed  Google Scholar 

  50. Johnson M. Unmasking the changing face of dental caries. Dentistry. 1996;16:5–7.

    PubMed  Google Scholar 

  51. Jones R, Huynh G, Jones G, Fried D. Near-infrared transillumination at 1310-nm for the imaging of early dental decay. Opt Express. 2003;11:2259–65.

    PubMed  Google Scholar 

  52. Keyes PH. The infectious and transmissible nature of experimental dental caries: findings and implications. Arch Oral Biol. 1960;1:304–IN4. https://doi.org/10.1016/0003-9969(60)90091-1. Pergamon

    CrossRef  PubMed  Google Scholar 

  53. Kite OW, Shaw JH, Sognnaes RF. The prevention of experimental tooth decay by tube-feeding. J Nutr. 1950;42:89–105. https://doi.org/10.1093/jn/42.1.89.

    CrossRef  PubMed  Google Scholar 

  54. Kotsanos N, Darling AI. Influence of posteruptive age of enamel on its susceptibility to artificial caries. Caries Res. 1991;25:241–50. https://doi.org/10.1159/000261371.

    CrossRef  PubMed  Google Scholar 

  55. Krasse B, Jordan HV, Edwardsson S, Svensson I, Trell L. The occurrence of certain “caries-inducing” streptococci in human dental plaque material with special reference to frequency and activity of caries. Arch Oral Biol. 1968;13:911–8.

    PubMed  Google Scholar 

  56. Kühnisch J, Söchtig F, Pitchika V, Laubender R, Neuhaus KW, Lussi A, et al. In vivo validation of near-infrared light transillumination for interproximal dentin caries detection. Clin Oral Investig. 2016;20:821–9. https://doi.org/10.1007/s00784-015-1559-4.

    CrossRef  PubMed  Google Scholar 

  57. Larmas M. Simple tests for caries susceptibility. Int Dent J. 1985;35:109–17.

    PubMed  Google Scholar 

  58. Larmas M. Saliva and dental caries: diagnostic tests for normal dental practice. Int Dent J. 1992;42:199–208.

    PubMed  Google Scholar 

  59. Leal SC, Mickenautsch S. Salivary streptococcus mutans count and caries outcome-a systematic review. J Minim Interv Dent J Minim Interv Dent. 2010;

    Google Scholar 

  60. Lederer A, Kunzelmann K-H, Heck K, Hickel R, Litzenburger F. In vitro validation of near-infrared transillumination at 780 nm for the detection of caries on proximal surfaces. Clin Oral Investig. 2019; https://doi.org/10.1007/s00784-019-02824-0.

    PubMed  Google Scholar 

  61. Lussi A. Validity of diagnostic and treatment decisions of fissure caries. Caries Res. 1991;25:296–303. https://doi.org/10.1159/000261380.

    CrossRef  PubMed  Google Scholar 

  62. Lussi A, Schroeder A. Methods for the diagnosis and follow-up of caries. When to drill? Schweiz Monatsschr Zahnmed. 1998;108:357–70.

    PubMed  Google Scholar 

  63. Maltz M, Parolo CCF, Jardim JJ. Cariologia clínica. In: Toledo OA, editor. Odontopediatria Fundam para a prática clínica. 2nd ed. São Paulo: Editorial Premier; 2005. p. 105–50.

    Google Scholar 

  64. Mandel ID. The functions of saliva. J Dent Res. 1987;66:623–7. https://doi.org/10.1177/00220345870660S203.

    CrossRef  PubMed  Google Scholar 

  65. Marinho VA, Pereira GM. Cárie: Diagnóstico e plano de tratamento. Rev Univ Alfenas. 1998;4:27–37.

    Google Scholar 

  66. Mejàre I, Källestål C, Stenlund H. Incidence and progression of approximal caries from 11 to 22 years of age in Sweden: a prospective radiographic study. Caries Res. 1999;33:93–100. https://doi.org/10.1159/000016502.

    CrossRef  PubMed  Google Scholar 

  67. Mejàre I, Malmgren B. Clinical and radiographic appearance of proximal carious lesions at the time of operative treatment in young permanent teeth. Caries Res. 1986;94:19–26.

    Google Scholar 

  68. Mejàre I, Stenlund H, Zelezny-Holmlund C. Caries incidence and lesion progression from adolescence to young adulthood: a prospective 15-year cohort study in Sweden. Caries Res. 2004;38:130–41. https://doi.org/10.1159/000075937.

    CrossRef  PubMed  Google Scholar 

  69. Mjör IA, Qvist V. Marginal failures of amalgam and composite restorations. J Dent. 1997;25:25–30.

    PubMed  Google Scholar 

  70. Nanda J, Sachdev V, Sandhu M, Deep-Singh-Nanda K. Correlation between dental caries experience and mutans streptococci counts using saliva and plaque as microbial risk indicators in 3–8 year old children. A cross Sectional study. J Clin Exp Dent. 2015:e114–8. https://doi.org/10.4317/jced.51814.

  71. Newbrun E. Problems in caries diagnosis. Int Dent J. 1993;43:133–42.

    PubMed  Google Scholar 

  72. Nissan R, Segal H, Pashley D, Stevens R, Trowbridge H. Ability of bacterial endotoxin to diffuse through human dentin. J Endod. 1995;21:62–4. https://doi.org/10.1016/S0099-2399(06)81096-4.

    CrossRef  PubMed  Google Scholar 

  73. Nyvad B, Fejerskov O. Root surface caries: clinical, histopathological and microbiological features and clinical implications. Int Dent J. 1982;32:311–26.

    PubMed  Google Scholar 

  74. Orland FJ, Blayney JR, Harrison RW, Reyniers JA, Trexler PC, Wagner M, et al. Use of the germfree animal technic in the study of experimental dental caries. J Dent Res. 1954;33:147–74. https://doi.org/10.1177/00220345540330020201.

    CrossRef  PubMed  Google Scholar 

  75. Pereira AC. Odontologia em Saúde Coletiva – Planejando Ações e Promovendo Saúde. Porto Alegre: Artmed; 2003.

    Google Scholar 

  76. Pitts NB. Monitoring of caries progression in permanent and primary posterior approximal enamel by bitewing radiography. Community Dent Oral Epidemiol. 1983;11:228–35.

    PubMed  Google Scholar 

  77. Pitts NB. The diagnosis of dental caries: 3. Rationale and overview of present and possible future techniques. Dent Update. 1992;19:32–8.

    PubMed  Google Scholar 

  78. Pitts NB, Chestnutt IG, Evans D, White D, Chadwick B, Steele JG. The dentinal caries experience of children in the United Kingdom, 2003. Br Dent J. 2006;200:313–20. https://doi.org/10.1038/sj.bdj.4813377.

    CrossRef  PubMed  Google Scholar 

  79. Pitts NB, Evans DJ. The dental caries experience of 14-year-old children in the United Kingdom. Surveys coordinated by the British Association for the Study of Community Dentistry in 1994/95. Community Dent Health. 1996;13:51–8.

    PubMed  Google Scholar 

  80. Pitts NB, Rimmer PA. An in vivo comparison of radiographic and directly assessed clinical caries status of posterior approximal surfaces in primary and permanent teeth. Caries Res. 1992;26:146–52. https://doi.org/10.1159/000261500.

    CrossRef  PubMed  Google Scholar 

  81. Pitts N, Ismail A, Martignon S, Ekstrand K, Douglas G, Longbottom C. ICCMS Quick Reference Guide for Practitioners and Educators. 2014.

    Google Scholar 

  82. Prabhakar A, Akanksha G, Deepak M, Sugandhan S. Diagnostic applications of saliva in dentistry. Marwah N, editor. Int J Clin Pediatr Dent. 2009;2:7–14. https://doi.org/10.5005/jp-journals-10005-1012.

    CrossRef  Google Scholar 

  83. Ricketts DN, Kidd EA, Wilson RF. Electronic diagnosis of occlusal caries in vitro: adaptation of the technique for epidemiological purposes. Community Dent Oral Epidemiol. 1997;25:238–41.

    PubMed  Google Scholar 

  84. Roberson TM, Heymann H, Swift EJ. Sturdevant’s art and science of operative dentistry. 5th ed. St. Louis: Mosby; 2006.

    Google Scholar 

  85. Rock WP, Kidd EA. The electronic detection of demineralisation in occlusal fissures. Br Dent J. 1988;164:243–7.

    PubMed  Google Scholar 

  86. Saravia ME, Silva LAB, Silva RAB, Lucisano MP, Echevarría AU, Echevarría JU, et al. Evaluation of chair-side assays in high microbiological caries-risk subjects. Braz Dent J. 2015;26:592–5. https://doi.org/10.1590/0103-6440201300389.

    CrossRef  PubMed  Google Scholar 

  87. Seddon RP. The detection of cavitation in carious approximal surfaces in vivo by tooth separation, impression and scanning electron microscopy. J Dent [Internet]. 1989;17:117–20. https://doi.org/10.1016/0300-5712(89)90103-6.

    CrossRef  Google Scholar 

  88. Shivakumar K, Prasad S, Chandu G. International caries detection and assessment system: a new paradigm in detection of dental caries. J Conserv Dent. 2009;12:10–6. https://doi.org/10.4103/0972-0707.53335.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  89. Stanley HR, Pereira JC, Spiegel E, Broom C, Schultz M. The detection and prevalence of reactive and physiologic sclerotic dentin, reparative dentin and dead tracts beneath various types of dental lesions according to tooth surface and age. J Oral Pathol. 1983;12:257–89.

    PubMed  Google Scholar 

  90. Strassler HE, Sensi LG. Technology-enhanced caries detection and diagnosis. Compend Contin Educ Dent. 2008;29:464–5, 468, 470.

    PubMed  Google Scholar 

  91. Tabak LA, Levine MJ, Mandel ID, Ellison SA. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol. 1982;11:1–17.

    PubMed  Google Scholar 

  92. Thenisch NL, Bachmann LM, Imfeld T, Leisebach Minder T, Steurer J. Are mutans streptococci detected in preschool children a reliable predictive factor for dental caries risk? A systematic review. Caries Res. 2006;40:366–74. https://doi.org/10.1159/000094280.

    CrossRef  PubMed  Google Scholar 

  93. Tracy KD, Dykstra BA, Gakenheimer DC, Scheetz JP, Lacina S, Scarfe WC, et al. Utility and effectiveness of computer-aided diagnosis of dental caries. Gen Dent. 59:136–44.

    Google Scholar 

  94. Vaarkamp J, Ten Bosch JJ, Verdonschot EH, Tranaeus S. Quantitative diagnosis of small approximal caries lesions utilizing wavelength-dependent fiber-optic transillumination. J Dent Res. 1997;76:875–82. https://doi.org/10.1177/00220345970760040901.

    CrossRef  PubMed  Google Scholar 

  95. Weyne S. Cariologia. In: Baratieri LN, editor. Dent Procedimentos Prev e Restauradores. São Paulo: Santos; 1989. p. 1–42.

    Google Scholar 

  96. Wöltgens JH, Bervoets TJ, Witjes F, Driessens FC. Effect of post-eruptive age on Ca and P loss from human enamel during demineralization in vitro. Arch Oral Biol. 1981;26:721–5.

    PubMed  Google Scholar 

  97. Young DA. New caries detection technologies and modern caries management: merging the strategies. Gen Dent. 50:320–31.

    Google Scholar 

  98. Zhou Q, Peng CF, Qin M. Near infrared light transillumination for detection of incipient proximal caries in primary molars. J Peking Univ Heal Sci. 2019;51:59–64. https://doi.org/10.19723/j.issn.1671-167X.2019.01.011.

    CrossRef  Google Scholar 

  99. Criteria Manual: International Caries Detection and Assessment System (ICDAS II). Workshop held in Baltimore; 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rocha Gomes Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Caneppele, T.M.F., Borges, A.B., Torres, C.R.G., Rodrigues, J.R., Attin, T. (2020). Cariology. In: Torres, C. (eds) Modern Operative Dentistry. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-31772-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31772-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31771-3

  • Online ISBN: 978-3-030-31772-0

  • eBook Packages: MedicineMedicine (R0)