Skip to main content

Poleward Moving Aurora Recognition with Deep Convolutional Networks

  • Conference paper
  • First Online:
Book cover Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Included in the following conference series:

Abstract

Deep learning has become the most powerful tool for action recognition in recent years. The aim of this paper is to investigate the proper convolutional network architecture to classify poleward moving auroras (PMAs). The first challenge is that the auroral images have complex morphological and motion characteristics, so it is difficult to get the discriminative motion information to recognize the PMA events. Second, the imbalanced dataset will cause the serious problems, such as the network tends to identify a given sequence as the majority of events (non-PMAs). To address these issues, we use 3D ResNet-18 to get the motion information of auroral image sequence based on optical flow and also use the spatial attention mechanism to make the network pay more attention to PMA events. The empirical results demonstrate that our method achieves significant performance improvement compared with the previous method.

This work was supported by the National Natural Science Foundation of China under Grant No. 61571353. Student paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vorobjev, V.G., Gustafsson, G., Starkov, G.V., Feldstein, Y.I., Shevnina, N.F.: Dynamics of day and night aurora during substorms. Planet. Space Sci. 23(2), 269–278 (1975)

    Article  Google Scholar 

  2. Milan, S.E., Yeoman, T.K., Lester, M., Moen, J., Sandholt, P.E.: Post-noon two-minute period pulsating aurora and their relationship to the dayside convection pattern. Ann. Geophys. 17, 877–891 (1999)

    Article  Google Scholar 

  3. Kozlovsky, A., Kangas, J.: Motion and origin of noon high-latitude poleward moving auroral arcs on closed magnetic field lines. J. Geophys. Res.: Space Phys. 107(A2), 1017 (2002)

    Google Scholar 

  4. Wang, B.: Investigation of triggering of poleward moving auroral forms using satellite-imager coordinated observations. J. Geophys. Res.: Space Phys. 121(11), 10–929 (2016)

    Google Scholar 

  5. Xing, Z.Y., et al.: Poleward moving auroral forms (PMAFs) observed at the yellow river station: a statistical study of its dependence on the solar wind conditions. J. Atmos. Solar Terr. Phys. 86, 25–33 (2012)

    Article  Google Scholar 

  6. Fasel, G.J.: Dayside poleward moving auroral forms: a statistical study. J. Geophys. Res.: Space Phys. 100(AZ), 11891–11905 (1995)

    Article  Google Scholar 

  7. Yang, Q., Liang, J., Zejun, H., Xing, Z., Zhao, H.: Automatic recognition of poleward moving auroras from all-sky image sequences based on HMM and SVM. Planet. Space Sci. 69(1), 40–48 (2012)

    Article  Google Scholar 

  8. Zha, S., Luisier, F., Andrews, W., Srivastava, N., Salakhutdinov, R.: Exploiting image-trained CNN architectures for unconstrained video classification. arXiv preprint arXiv:1503.04144 (2015)

  9. Ji, S., Wei, X., Yang, M., Kai, Y.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

    Article  Google Scholar 

  10. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  11. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  12. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  13. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. arXiv preprint arXiv:1812.03982 (2018)

  14. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  15. Sharma, S., Kiros, R., Salakhutdinov, R.: Action recognition using visual attention. arXiv preprint arXiv:1511.04119 (2015)

  16. Li, Z., Gavrilyuk, K., Gavves, E., Jain, M., Snoek, C.G.M.: VideoLSTM convolves, attends and flows for action recognition. Comput. Vis. Image Underst. 166, 41–50 (2018)

    Article  Google Scholar 

  17. Yang, X., Gao, X., Tao, D., Li, X., Han, B., Li, J.: Shape-constrained sparse and low-rank decomposition for auroral substorm detection. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 32–46 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wang, Q., et al.: Spatial texture based automatic classification of dayside aurora in all-sky images. J. Atmos. Solar Terr. Phys. 72(5–6), 498–508 (2010)

    Article  Google Scholar 

  19. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  20. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  21. Hara, K., Kataoka, H., Satoh, Y.: Learning spatio-temporal features with 3D residual networks for action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3154–3160 (2017)

    Google Scholar 

  22. Ferri, C., Hernández-Orallo, J., Modroiu, R.: An experimental comparison of performance measures for classification. Pattern Recogn. Lett. 30(1), 27–38 (2009)

    Article  Google Scholar 

  23. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimin Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y., Niu, C., Dong, M., Ren, S., Liang, J. (2019). Poleward Moving Aurora Recognition with Deep Convolutional Networks. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics