Skip to main content

BDGAN: Image Blind Denoising Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11858))

Included in the following conference series:

Abstract

In this paper, we present an end-to-end method for image blind denoising based on a conditional generative adversarial network (GAN). Discriminative learning-based methods, such as DnCNN, can achieve state-of-the-art denoising results but these methods usually focus on establishing noise model that resembles natural noisy images, thus neglecting to recover clean images from noisy images. Non-blind denoising methods are also limited since a precise noise level is hard to be obtained in the real world. Using multiple modified methods, we propose a novel end-to-end architecture which could directly generate clean images. A range of experiments have been done to show the convenience and superiority of our approach in image blind denoising.

The first author is a student.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Proces. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  2. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision. IEEE (2011)

    Google Scholar 

  3. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  4. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  5. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, pp. 769–776 (2009)

    Google Scholar 

  6. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  7. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 3, pp. 2672–2680 (2014)

    Google Scholar 

  8. Lebrun, M., Colom, M., Morel, J.M.: Multiscale image blind denoising. IEEE Trans. Image Process. Publ. IEEE Sig. Process. Soc. 24(10), 3149–61 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., et al.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  10. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. Comput. Sci. (2015)

    Google Scholar 

  11. Mao, X., et al.: Least squares generative adversarial networks (2016)

    Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  13. Huang, X., et al.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Nah, S., Hyun, T., Kyoung, K., Lee, M.: Deep multi-scale convolutional neural network for dynamic scene deblurring (2016)

    Google Scholar 

  16. Zhang, K., et al.: Beyonda Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  17. Zhang, K., et al.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27, 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  18. Guo, S., et al.: Toward convolutional blind denoising of real photographs. arXiv preprint arXiv:1807.04686 (2018)

  19. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. ArXiv e-prints, September 2016

    Google Scholar 

  20. Arbelaez, P., et al.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  21. Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. PP(99), 1 (2016)

    Article  Google Scholar 

  22. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  23. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  26. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  27. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  30. Anaya, J., Barbu, A.: RENOIR - a benchmark dataset for real noise reduction evaluation. Comput. Sci. 51, 144–154 (2014)

    Google Scholar 

Download references

Acknowledgement

This project is supported by the National Natural Science Foundation of China (61473148), \(13^{th}\) Five-Year equipment pre research project (30501050403) and GraduateInnovation Base LabOpen Fund of Nanjing University of Aeronautics and Astronautics (No. kfjj20180316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guili Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, S., Xu, G., Cheng, Y., Han, X., Wang, Z. (2019). BDGAN: Image Blind Denoising Using Generative Adversarial Networks. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2019. Lecture Notes in Computer Science(), vol 11858. Springer, Cham. https://doi.org/10.1007/978-3-030-31723-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31723-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31722-5

  • Online ISBN: 978-3-030-31723-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics