Hospital Surgery Scheduling Under Uncertainty Using Multiobjective Evolutionary Algorithms

  • Kazi Shah Nawaz RiponEmail author
  • Jacob Henrik Nyman
Part of the Studies in Big Data book series (SBD, volume 66)


Surgery scheduling is the allocating of hospital resources to surgical procedures over time. These problems are continuously encountered in hospitals delivering surgical treatment to patients, and they must be solved with great effort and care in order to utilize scarce resources, balance conflicting interests and hedge for uncertainty. Therefore, machine learning algorithms are generally not directly applicable to surgery scheduling problems. The motivation of this work is to narrow the gap between evolutionary approaches to machine scheduling problems from literature and their practical applications to real-world hospital surgery scheduling problems. We formulate a new variation of the surgery admission planning problem and develop evolutionary mechanisms to solve it with state of the art multiobjective evolutionary algorithms. Our most important contribution is a fast simulation approach for evaluating surgery schedules under surgery duration uncertainty. By using Monte-Carlo simulation to estimate the fitness of individuals during optimization, we attempt to find solutions that are robust against variations in surgery durations.


  1. 1.
    Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Nyman, J., Ripon, K.S.N.: Metaheuristics for the multiobjective surgery admission planning problem. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)Google Scholar
  3. 3.
    Riise, A., Burke, E.K.: Local search for the surgery admission planning problem. J. Heuristics 17(4), 389–414 (2011)CrossRefGoogle Scholar
  4. 4.
    Nyman, J.H.: Multiobjective evolutionary surgery scheduling under uncertainty. Master’s thesis, Norwegian University of Science and Technology, Norway (2018)Google Scholar
  5. 5.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. TIK-report 103 (2001)Google Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Ripon, K.S.N., Kwong, S., Man, K.F.: A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization. Inform. Sci. 177(2), 632–654 (2007)zbMATHCrossRefGoogle Scholar
  8. 8.
    Yen, G.G., He, Z.: Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans. Evolut. Comput. 18(1), 131–144 (2014)CrossRefGoogle Scholar
  9. 9.
    Jin, Y., Branke, J., et al.: Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evolut. Comput. 9(3), 303–317 (2005)CrossRefGoogle Scholar
  10. 10.
    Gillespie, B.M., Chaboyer, W., Fairweather, N.: Factors that influence the expected length of operation: results of a prospective study. BMJ Qual. Saf. 21(1), 3–12 (2012)CrossRefGoogle Scholar
  11. 11.
    Joustra, P., Meester, R., van Ophem, H.: Can statisticians beat surgeons at the planning of operations? Empir. Econ. 44(3), 1697–1718 (2013)CrossRefGoogle Scholar
  12. 12.
    Kayış, E., Khaniyev, T.T., Suermondt, J., Sylvester, K.: A robust estimation model for surgery durations with temporal, operational, and surgery team effects. Health Care Manag. Sci. 18(3), 222–233 (2015)CrossRefGoogle Scholar
  13. 13.
    Choi, S., Wilhelm, W.E.: An analysis of sequencing surgeries with durations that follow the lognormal, gamma, or normal distribution. IIE Trans. Healthc. Syst. Eng. 2(2), 156–171 (2012)CrossRefGoogle Scholar
  14. 14.
    Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic algorithms–I. Representation. Comput. Ind. Eng. 30(4), 983–997 (1996)Google Scholar
  15. 15.
    Ripon, K.S.N., Tsang, C.H., Kwong, S.: An evolutionary approach for solving the multi-objective job-shop scheduling problem. In: Evolutionary Scheduling, pp. 165–195. Springer, Berlin (2007)Google Scholar
  16. 16.
    Ripon, K.S.N.: Hybrid evolutionary approach for multi-objective job-shop scheduling problem. Malays. J. Comput. Sci. 20(2), 183–198 (2007)CrossRefGoogle Scholar
  17. 17.
    Sprecher, A., Kolisch, R., Drexl, A.: Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 80(1), 94–102 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
    Fei, H., Meskens, N., Chu, C.: A planning and scheduling problem for an operating theatre using an open scheduling strategy. Comput. Ind. Eng. 58(2), 221–230 (2010)CrossRefGoogle Scholar
  19. 19.
    Gonçalves, J.F., de Magalhães Mendes, J.J., Resende, M.G.: A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167(1), 77–95 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic algorithms, part II: hybrid genetic search strategies. Comput. Ind. Eng. 36(2), 343–364 (1999)CrossRefGoogle Scholar
  21. 21.
    Batun, S., Denton, B.T., Huschka, T.R., Schaefer, A.J.: Operating room pooling and parallel surgery processing under uncertainty. INFORMS J. Comput. 23(2), 220–237 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Cardoen, B., Demeulemeester, E., Beliën, J.: Optimizing a multiple objective surgical case sequencing problem. Int. J. Prod. Econ. 119(2), 354–366 (2009)zbMATHCrossRefGoogle Scholar
  23. 23.
    Gen, M., Tsujimura, Y., Kubota, E.: Solving job-shop scheduling problems by genetic algorithm. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol. 2, 1577–1582. IEEE (1994)Google Scholar
  24. 24.
    Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res. 35(10), 3202–3212 (2008)zbMATHCrossRefGoogle Scholar
  25. 25.
    Etiler, O., Toklu, B., Atak, M., Wilson, J.: A genetic algorithm for flow shop scheduling problems. J. Oper. Res. Soc. 55(8), 830–835 (2004)zbMATHCrossRefGoogle Scholar
  26. 26.
    Iyer, S.K., Saxena, B.: Improved genetic algorithm for the permutation flowshop scheduling problem. Comput. Oper. Res. 31(4), 593–606 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Louis, S.J., Xu, Z.: Genetic algorithms for open shop scheduling and re-scheduling. In: Proceedings of the 11th ISCA International Conference on Computers and their Applications, vol. 28, pp. 99–102 (1996)Google Scholar
  28. 28.
    Gul, S., Denton, B.T., Fowler, J.W., Huschka, T.: Bi-criteria scheduling of surgical services for an outpatient procedure center. Prod. Oper. Manag. 20(3), 406–417 (2011)CrossRefGoogle Scholar
  29. 29.
    Marques, I., Captivo, M.E., Pato, M.V.: A bicriteria heuristic for an elective surgery scheduling problem. Health Care Manag. Sci. 18(3), 251–266 (2015)CrossRefGoogle Scholar
  30. 30.
    Mateus, C., Marques, I., Captivo, M.E.: Local search heuristics for a surgical case assignment problem. Oper. Res. Health Care 17, 71–81 (2018)CrossRefGoogle Scholar
  31. 31.
    Dellaert, N., Jeunet, J.: A variable neighborhood search algorithm for the surgery tactical planning problem. Comput. Oper. Res. 84, 216–225 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Ripon, K.S.N., Glette, K., Khan, K.N., Hovin, M., Torresen, J.: Adaptive variable neighborhood search for solving multi-objective facility layout problems with unequal area facilities. Swarm Evol. Comput. 8, 1–12 (2013)CrossRefGoogle Scholar
  33. 33.
    Molina-Pariente, J.M., Hans, E.W., Framinan, J.M., Gomez-Cia, T.: New heuristics for planning operating rooms. Comput. Ind. Eng. 90, 429–443 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhou, Bh, Yin, M., Zq, Lu: An improved lagrangian relaxation heuristic for the scheduling problem of operating theatres. Comput. Ind. Eng. 101, 490–503 (2016)CrossRefGoogle Scholar
  35. 35.
    Jebali, A., Diabat, A.: A stochastic model for operating room planning under capacity constraints. Int. J. Prod. Res. 53(24), 7252–7270 (2015)CrossRefGoogle Scholar
  36. 36.
    Guido, R., Conforti, D.: A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Comput. Oper. Res. 87, 270–282 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Zhang, Z., Li, C., Wang, M., Wu, Q.: A hybrid multi-objective evolutionary algorithm for operating room assignment problem. J. Med. Imaging Health Inform. 7(1), 47–54 (2017)CrossRefGoogle Scholar
  38. 38.
    Xiang, W.: A multi-objective ACO for operating room scheduling optimization. Nat. Comput. 16(4), 607–617 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Bruni, M., Beraldi, P., Conforti, D.: A stochastic programming approach for operating theatre scheduling under uncertainty. IMA J. Manag. Math. 26(1), 99–119 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Denton, B., Viapiano, J., Vogl, A.: Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Manag. Sci. 10(1), 13–24 (2007)CrossRefGoogle Scholar
  41. 41.
    Rath, S., Rajaram, K., Mahajan, A.: Integrated anesthesiologist and room scheduling for surgeries: Methodology and application. Oper. Res. 65(6), 1460–1478 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Min, D., Yih, Y.: Scheduling elective surgery under uncertainty and downstream capacity constraints. Eur. J. Oper. Res. 206(3), 642–652 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Pulido, R., Aguirre, A.M., Ibáñez-Herrero, N., Ortega-Mier, M., García-Sánchez, Á., Méndez, C.A.: Optimization methods for the operating room management under uncertainty: stochastic programming vs. decomposition approach. J. Appl. Oper. Res. 201(6), 3 (2014)Google Scholar
  44. 44.
    Kulkarni, A.J., Baki, M.F., Chaouch, B.A.: Application of the cohort-intelligence optimization method to three selected combinatorial optimization problems. Eur. J. Oper. Res. 250(2), 427–447 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Winston, W.L., Venkataramanan, M., Goldberg, J.B.: Introduction to Mathematical Programming, vol. 1. Thomson/Brooks/Cole, Pacific Grove (2003)Google Scholar
  46. 46.
    Gao, J., Gen, M., Sun, L., Zhao, X.: A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Comput. Ind. Eng. 53(1), 149–162 (2007)CrossRefGoogle Scholar
  47. 47.
    Chang, H., Huang, K., Wu, C.: Determination of sample size in using central limit theorem for weibull distribution. Int. J. Inf. Manag. Sci. 17(3), 31 (2006)zbMATHGoogle Scholar
  48. 48.
    While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.University of OsloOsloNorway

Personalised recommendations