Basic Muscle Physiology in Relation to Hamstring Injury and Repair



A hamstring strain injury has long been considered as a skeletal muscle injury, and the connective tissue associated with the muscle, i.e., the tendon/aponeurosis, has not been addressed sufficiently. A hamstring strain is a traumatic injury which very often occurs at the myotendinous junction (MTJ), which is the interface between the muscle and the tendon. The MTJ is formed during development and animal research clearly shows the interdependence and interaction between the muscle-derived and the connective tissue-derived cells during developmental processes. Additionally, several key molecules are indispensable for the MTJ formation. Although the MTJ is the most affected site after a strain injury, the research in adaptations to loading, unloading, and regeneration of the human MTJ is scarce. Skeletal muscle has a pronounced healing capacity, but the connective tissue in contrast is associated with a long repair period and incomplete repair. The differences in tissue healing and regeneration may complicate MTJ repair after hamstring strain injuries and might be the underlying factor why these sports injuries have a high recurrence rate. Re-injuries might occur as the repaired tissues have inferior mechanical properties as it is often described when scar tissue forms following tissue damage. Prolonged inflammation has been tightly associated with scar formation in several tissues, and recent data on human strain injuries support the idea that inflammation is present for an extended time after strain injuries.

This review provides some of the background on molecular and cellular processes during MTJ formation and during skeletal muscle and connective tissue repair. It summarizes the findings around fibrosis and the link between inflammation and fibrosis/scar formation. Finally, this review elaborates on the proximal hamstring tendinopathy and in which way a loading regime might contribute to healing.


  1. 1.
    Ekstrand J. Injury incidence and injury patterns in professional football - the UEFA injury study Injury incidence and injury patterns in professional football – the UEFA Injury Study. Br J Sports Med. 2011;45(7):533–8.CrossRefGoogle Scholar
  2. 2.
    Tidball JG, Salem G, Zernicke R. Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries. J Appl Physiol. 1993;74(3):1280–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Tidball JG, Chan M. Adhesive strength of single muscle cells to basement membrane at myotendinous junctions. J Appl Physiol. 1989;67(3):1063–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Garrett WE, Nikolaou PK, Ribbeck BM, Glisson RR, Seaber AV. The effect of muscle architecture on the biomechanical failure properties of skeletal muscle under passive extension. Am J Sports Med. 1988;16(1):7–12.PubMedCrossRefGoogle Scholar
  5. 5.
    van der Made AD, Wieldraaijer T, Kerkhoffs GM, Kleipool RP, Engebretsen L, van Dijk CN, et al. The hamstring muscle complex. Knee Surg Sport Traumatol Arthrosc. 2015;23(7):2115–22.CrossRefGoogle Scholar
  6. 6.
    Woodley SJ, Mercer SR. Hamstring muscles: architecture and innervation. Cells Tissues Organs. 2005;179(3):125–41.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Brukner P, Connell D. “Serious thigh muscle strains”: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains. Br J Sports Med. 2015;2015:bjsports-2015-095136.Google Scholar
  8. 8.
    Vaittinen S, Lukka R, Sahlgren C, Rantanen J, Hurme T, Lendahl U, et al. Specific and innervation-regulated expression of the intermediate filament protein nestin at neuromuscular and myotendinous junctions in skeletal muscle. Am J Pathol. 1999;154(2):591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Äärimaa V, Kääriäinen M, Vaittinen S, Tanner J, Järvinen T, Best T, et al. Restoration of myofiber continuity after transection injury in the rat soleus. Neuromuscul Disord. 2004;14(7):421–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kääriainen M, Liljamo T, Pelto-Huikko M, Heino J, Jarvinen M, Kalimo H. Regulation of alpha7 integrin by mechanical stress during skeletal muscle regeneration. Neuromuscul Disord. 2001;11(4):360–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hurme T, Kalimo H, Lehto M, Järvinen M. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc. 1991;23(7):801–10.Google Scholar
  12. 12.
    Kääriäinen M, Nissinen L, Kaufman S, Sonnenberg A, Järvinen M, Heino J, et al. Expression of alpha7beta1 integrin splicing variants during skeletal muscle regeneration. Am J Pathol. 2002;161(3):1023–31.Google Scholar
  13. 13.
    Kääriäinen M, Kääriäinen J, Järvinen TLN, Nissinen L, Heino J, Järvinen M, et al. Integrin and dystrophin associated adhesion protein complexes during regeneration of shearing-type muscle injury. Neuromuscul Disord. 2000;10(2):121–32.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle. 2011;1(1):1–13.CrossRefGoogle Scholar
  15. 15.
    Vaittinen S, Hurme T, Rantanen J, Kalimo H. Transected myofibres may remain permanently divided in two parts. Neuromuscul Disord. 2002;12(6):584–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Garrett WE. Muscle strain injuries. Am J Sport Med. 1996;24(6 Suppl):S2–8.CrossRefGoogle Scholar
  17. 17.
    Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury. Skelet Radiol. 2003;32(10):582–9.CrossRefGoogle Scholar
  18. 18.
    Paxton JZ, Baar K. Tendon mechanics: the argument heats up. J Appl Physiol. 2007;103(7):423–4.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Fiorentino NM, Blemker SS. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. J Biomech. 2014;47(13):3325–33.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tidball JG. Force transmission across muscle cell membranes. J Biomech. 1991;24(Suppl. 1):43–52.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tidball JG, Daniel TL. Myotendinous junctions of tonic muscle cells: structure and loading. Cell Tissue Res. 1986;245(2):315–22.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Curzi D, Ambrogini P, Falcieri E, Burattini S. Morphogenesis of rat myotendinous junction. Muscles Ligaments Tendons J. 2013;3(4):275–80.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Knudsen AB, Larsen M, Mackey AL, Hjort M, Hansen KK, Qvortrup K, et al. The human myotendinous junction: an ultrastructural and 3D analysis study. Scand J Med Sci Sport. 2015;25(1):e116–23.CrossRefGoogle Scholar
  24. 24.
    Bayer ML, Mackey A, Magnusson SP, Krogsgaard MR, Kjær M. Treatment of acute muscle injuries. Ugeskr Laeger. 2019;181(8):pii: V11180753.Google Scholar
  25. 25.
    Magnusson SP, Hansen P, Aagaard P, Brond J, Dyhre-Poulsen P, Bojsen-Moller J, et al. Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol Scand. 2003;177(2):185–95.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sousa F, Ishikawa M, Vilas-Boas JP, Komi PV. Intensity- and muscle-specific fascicle behavior during human drop jumps. J Appl Physiol. 2006;102(1):382–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Townsend DW. Finding the sweet spot: assembly and glycosylation of the dystrophin-associated glycoprotein complex. Anat Rec. 2014;297(9):1694–705.CrossRefGoogle Scholar
  28. 28.
    Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66(6):1121–31.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Samitt CE, Bonilla E. Immunocytochemical study of dystrophin at the myotendinous junction. Muscle Nerve. 1990;13(6):493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Pilgram GSK, Potikanond S, Baines RA, Fradkin LG, Noordermeer JN. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol. 2010;41:1–21.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bao ZZ, Lakonishok M, Kaufman S. Horwitz a F. Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci. 1993;106(Pt 2):579–89.Google Scholar
  32. 32.
    Welser JV, Rooney JE, Cohen NC, Gurpur PB, Singer CA, Evans RA, et al. Myotendinous junction defects and reduced force transmission in mice that lack alpha7 integrin and utrophin. Am J Pathol. 2009;175(4):1545–54.Google Scholar
  33. 33.
    Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development. 2015;142(24):4191–204.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development. 2010;137(19):3347.PubMedCentralCrossRefGoogle Scholar
  35. 35.
    Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, et al. A novel marker of tissue junctions, collagen XXII. J Biol Chem. 2004;279(21):22514–21.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zwolanek D, Veit G, Eble JA, Gullberg D, Ruggiero F, Heino J, et al. Collagen XXII binds to collagen-binding integrins via the novel motifs GLQGER and GFKGER. Biochem J. 2014;227:217–27.CrossRefGoogle Scholar
  37. 37.
    Charvet B, Guiraud A, Malbouyres M, Zwolanek D, Guillon E, Bretaud S, et al. Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development. 2013;140(22):4602–13.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jakobsen JR, Mackey AL, Knudsen AB, Koch M, Kjær M, Krogsgaard MR. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scand J Med Sci Sport. 2017;27(12):1547–59.CrossRefGoogle Scholar
  39. 39.
    Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998;393(6681):181–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Järvinen TA, Józsa L, Kannus P, Järvinen TLN, Hurme T, Kvist M, et al. Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci. 2003;116(Pt 5):857–66.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129(23):4321–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Adams JC. Thrombospondins: multifunctional regulators of cell interactions. Annu Rev Cell Dev Biol. 2001;17(1):25–51.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Frolova EG, Drazba J, Krukovets I, Kostenko V, Blech L, Harry C, et al. Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol. 2014;37:35–48.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development. 1998;125(20):4019–32.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Jakobsen JR, Jakobsen NR, Mackey AL, Koch M, Kjaer M, Krogsgaard MR. Remodeling of muscle fibers approaching the human myotendinous junction. Scand J Med Sci Sport. 2018;28(8):1859–65.CrossRefGoogle Scholar
  46. 46.
    Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA. Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve. 2006;33(2):242–53.CrossRefGoogle Scholar
  47. 47.
    Jamali AA, Afshar P, Abrams RA, Lieber RL. Differential expression of neural cell adhesion molecule (NCAM) after tenotomy in rabbit skeletal muscle. J Orthop Res. 2002;20(2):364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Curzi D, Salucci S, Marini M, Esposito F, Agnello L, Veicsteinas A, et al. How physical exercise changes rat myotendinous junctions: an ultrastructural study. Eur J Histochem. 2012;56(2):117–22.CrossRefGoogle Scholar
  49. 49.
    Tidball JG, Quan DM. Reduction in myotendinous junction surface area of rats subjected to 4-day spaceflight. J Appl Physiol. 1992;73(1):59–64.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zamora AJ, Carnino A, Roffino S, Marini JF. Respective effects of hindlimb suspension, confinement and spaceflight on myotendinous junction ultrastructure. Acta Astronaut. 1995;36(8–12):693–706.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Curzi D, Lattanzi D, Ciuffoli S, Burattini S, Grindeland RE, Edgerton VR, et al. Growth hormone plus resistance exercise attenuate structural changes in rat myotendinous junctions resulting from chronic unloading. Eur J Histochem. 2013;57(4):248–55.CrossRefGoogle Scholar
  52. 52.
    Palma LD, Marinelli M, Pavan M, Bertoni-Freddari C. Involvement of the muscle-tendon junction in skeletal muscle atrophy: an ultrastructural study. Romanian J Morphol Embryol. 2011;52(1):105–9.Google Scholar
  53. 53.
    Bayer MLML, Magnusson SPP, Kjaer M. Early versus delayed rehabilitation after acute muscle injury. N Engl J Med. 2017;377(13):1300–1.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bayer ML, Hoegberget-Kalisz M, Jensen MH, Olesen JL, Svensson RB, Couppé C, et al. Role of tissue perfusion, muscle strength recovery and pain in rehabilitation after acute muscle strain injury: a randomized controlled trial comparing early and delayed rehabilitation. Scand J Med Sci Sports. 2018;28(12):2579–91.CrossRefGoogle Scholar
  55. 55.
    Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skelet Radiol. 2008;37(12):1101–9.CrossRefGoogle Scholar
  56. 56.
    Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lepper C, Partridge TA, Fan C-M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011;138(17):3639–46.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mackey AL, Kjaer M. The breaking and making of healthy adult human skeletal muscle in vivo. Skelet Muscle. 2017;7(1):1–18.CrossRefGoogle Scholar
  59. 59.
    Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Schultz E. Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol. 1996;175(1):84–94.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hughes SM, Blau HM. Migration of myoblasts across basal lamina during skeletal muscle development. Nature. 1990;345(6273):350–3.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005;122(2):289–301.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Caldwell CJ, Mattey DL, Weller RO. Role of the basement membrane in the regeneration of skeletal muscle. Neuropathol Appl Neurobiol. 1990;16(3):225–38.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tidball JG. Myotendinous junction: morphological changes and mechanical failure associated with muscle cell atrophy. Exp Mol Pathol. 1984;40(1):1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M. Muscle injuries: biology and treatment. Am J Sport Med. 2005;33(5):745–64.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kääriainen M, Kääriainen J, Jarvinen TLN, Sievanen H, Kalimo H, Jarvinen M. Correlation between biomechanical and structural changes during the regeneration of skeletal muscle after laceration injury. J Orthop Res. 1998;16(2):197–206.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Van Der Made AD, Almusa E, Reurink G, Whiteley R, Weir A, Hamilton B, et al. Intramuscular tendon injury is not associated with an increased hamstring reinjury rate within 12 months after return to play. Br J Sports Med. 2018;52(19):1261–6.CrossRefGoogle Scholar
  68. 68.
    Heinemeier KM, Schjerling P, Heinemeier J, Magnusson SP, Kjaer M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. FASEB J. 2013;27(5):2074–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Magnusson SP, Kjaer M. The impact of loading, unloading, ageing and injury on the human tendon. J Physiol. 2019;597(5):1283–98.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Clegg PD, Strassburg S, Smith RK. Cell phenotypic variation in normal and damaged tendons. Int J Exp Pathol. 2007;84:227–35.CrossRefGoogle Scholar
  71. 71.
    Eliasson P, Couppé C, Lonsdale M, Svensson RB, Neergaard C, Kjær M, et al. Ruptured human Achilles tendon has elevated metabolic activity up to 1-year after repair. Eur J Nucl Med Mol Imaging. 2016;43(10):1868–77.PubMedCrossRefGoogle Scholar
  72. 72.
    Kettunen JA, Kvist M, Alanen E, Kujala UM. Long-term prognosis for jumper’s knee in male athletes. A prospective follow-up study. Am J Sport Med. 2002;30(5):689–92.CrossRefGoogle Scholar
  73. 73.
    Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Publ Gr. 2010;6(10):262–26843.PubMedCrossRefGoogle Scholar
  74. 74.
    Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sport. 2000;10(6):312–20.CrossRefGoogle Scholar
  75. 75.
    Bayer ML, Schjerling P, Herchenhan A, Zeltz C, Heinemeier KM, Christensen L, et al. Release of tensile strain on engineered human tendon tissue disturbs cell adhesions, changes matrix architecture, and induces an inflammatory phenotype. PLoS One. 2014;9(1):e86078.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Arnoczky SP, Lavagnino M, Egerbacher M, Caballero O, Gardner K, Shender MA. Loss of homeostatic strain alters mechanostat “set point” of tendon cells in vitro. Clin Orthop Relat Res. 2008;466:1583–91.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Arnoczky SP, Lavagnino M, Egerbacher M. The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int J Exp Pathol. 2007;88:217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ahmed IM, Lagopoulos M, McConnell P, Soames RW, Sefton GK. Blood supply of the Achilles tendon. J Orthop Res. 1998;16:591–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Schmidt-Rohlfing B, Graf J, Schneider U, Niethard FU. The blood supply of the Achilles tendon. Int Orthop. 1992;16(1):29–31.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Järvinen M. Healing of a crush injury in rat striated muscle: 3. A micro-angiographical study of the effect of early mobilization and immobilization on capillary ingrowth. Acta Pathol Microbiol Scand A Pathol. 1976;84A(1):85–94.Google Scholar
  81. 81.
    Järvinen M. Healing of a crush injury in rat striated muscle. 2. A histological study of the effect of early mobilization and immobilization on the repair processes. Acta Pathol Microbiol Scand A. 1975;83(3):269–82.CrossRefGoogle Scholar
  82. 82.
    Reurink G, Goudswaard GJ a, Tol JL, Almusa E, Moen MH, Weir A, et al. MRI observations at return to play of clinically recovered hamstring injuries. Br J Sports Med. 2014;48(18):1370–6.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Connell DA, Schneider-Kolsky ME, Hoving JL, Malara F, Buchbinder R, Koulouris G, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. Am J Roentgenol. 2004;183(4):975–84.CrossRefGoogle Scholar
  84. 84.
    Bayer ML, Bang L, Hoegberget-Kalisz M, Svensson RB, Olesen JL, Karlsson MM, et al. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans. FASEB J. 2019;33(9):10369–82.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Tyler TF, Schmitt BM, Nicholas SJ, McHugh MP. Rehabilitation after hamstring-strain injury emphasizing eccentric strengthening at long muscle lengths: results of long-term follow-up. J Sport Rehabil. 2017;26(2):131–40.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Sole G, Milosavljevic S, Nicholson H, Sullivan SJ. Selective strength loss and decreased muscle activity in hamstring injury. J Orthop Sport Phys Ther. 2011;41(5):354–63.CrossRefGoogle Scholar
  87. 87.
    Rantanen J, Ranne J, Hurme T, Kalimo H. Denervated segments of injured skeletal muscle fibers are reinnervated by newly formed neuromuscular junctions. J Neuropathol Exp Neurol. 1995;54(2):188–94.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Carbonetto S, Lindenbaum M. The basement membrane at the neuromuscular junction: a synaptic mediatrix. Curr Opin Neurobiol. 1995;5(5):596–605.PubMedCrossRefGoogle Scholar
  89. 89.
    Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.CrossRefGoogle Scholar
  90. 90.
    Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, et al. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Reurink G, Almusa E, Goudswaard GJ, Tol JL, Hamilton B, Moen MH, et al. No association between fibrosis on magnetic resonance imaging at return to play and hamstring reinjury risk. Am J Sports Med. 2015;43(5):1228–34.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Wynn T, Yugandhar VG, Clark M. Cellular and molecular mechanisms of fibrosis. J Pathol. 2013;46(2):26–32.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599–607.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kurkinen M, Vaheri A, Roberts PJ, Stenman S. Sequential appearance of fibronectin and collagen in experimental granulation tissue. Lab Investig. 1980;43(1):47–51.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Nagata H, Ueki H, Moriguchi T. Fibronectin: localization in normal human skin, granulation tissue, hypertrophic scar, mature scar, progressive systemic sclerotic skin, and other fibrosing dermatoses. Arch Dermatol. 1985;121(8):995–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Lehto M, Duance VC, Restall D. Collagen and fibronectin in a healing skeletal muscle injury. An immunohistological study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. J Bone Joint Surg Br. 1985;67(5):820–8.CrossRefGoogle Scholar
  97. 97.
    Hurme T, Kalimo H. Adhesion in skeletal muscle during regeneration. Muscle Nerve. 1992;15(4):482–9.CrossRefGoogle Scholar
  98. 98.
    Yates CC, Bodnar R, Wells A. Matrix control of scarring. Cell Mol Life Sci. 2011;68:1871–81.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lehto M, Sims TJ, Bailey AJ. Skeletal muscle injury—molecular changes in the collagen during healing. Res Exp Med. 1985;185(2):95–106.CrossRefGoogle Scholar
  100. 100.
    Volk SW, Iqbal SA, Bayat A. Interactions of the extracellular matrix and progenitor cells in cutaneous wound healing. Adv Wound Care. 2013;2(6):261–72.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bailey AJ, Paul RG, Knott L. Mechanisms of maturation and ageing of collagen. Mech Ageing Dev. 1998;106(1–2):1–56.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol. 2013;229(2):298–309.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127(3):526–37.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995;146(1):56–66.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Rog-Zielinska EA, Norris RA, Kohl P, Markwald R. The living scar – cardiac fibroblasts and the injured heart. Trends Mol Med. 2016;22(2):99–114.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Holmes JW, Laksman Z, Gepstein L. Making better scar: emerging approaches for modifying mechanical and electrical properties following infarction and ablation. Prog Biophys Mol Biol. 2016;120(1–3):134–48.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Young IH, Bye PTP. Gas exchange in disease: asthma, chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease. Compr Physiol. 2011;1(2):663–97.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Silder A, Reeder SB, Thelen DG. The influence of prior hamstring injury on lengthening muscle tissue mechanics. J Biomech. 2010;43(12):2254–60.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Turl SE, George KP. Adverse neural tension: a factor in repetitive hamstring strain? J Orthop Sport Phys Ther. 1998;27(1):16–21.CrossRefGoogle Scholar
  111. 111.
    Fox M, Mazza D, Kwiecien S, McHugh M. The effect of adverse neural tension on hamstring strength in rugby players. Med Sci Sport Exerc. 2014;46(5):203.CrossRefGoogle Scholar
  112. 112.
    Kornberg C, Lew P. The effect of stretching neural structures on grade one hamstring injuries. J Orthop Sport Phys Ther. 1989;10(12):481–7.CrossRefGoogle Scholar
  113. 113.
    Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lech M, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta Mol basis Dis. 2013;1832:989–97.CrossRefGoogle Scholar
  115. 115.
    Stramer BM, Mori R, Martin P. The inflammation – fibrosis link? A jekyll and hyde role for blood cells during wound repair. J Invest Dermatol. 2007;127(5):1009–17.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Lupher ML, Gallatin WM. Regulation of fibrosis by the immune system. Adv Immunol. 2006;89:245–88.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Satoh T, Nakagawa K, Sugihara F, Kuwahara R, Ashihara M, Yamane F, et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature. 2017;541(7635):96–101.PubMedCrossRefGoogle Scholar
  118. 118.
    Sanfilippo JL, Silder A, Sherry MA, Tuite MJ, Heiderscheit BC. Hamstring strength and morphology progression after return to sport from injury. Med Sci Sports Exerc. 2013;45(3):448–54.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Szpaderska AM, Egozi EI, Gamelli RL, DiPietro LA. The effect of thrombocytopenia on dermal wound healing. J Invest Dermatol. 2003;120(6):1130–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007;13(7):851–6.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem. 2014;289(51):35237–45.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011;21(2):223–44.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med. 2005;11(11):1173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol. 2011;12:1035–44.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tao Z-Y, Cavasin MA, Yang F, Liu Y-H, Yang X-P. Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci. 2004;74:1561–72.PubMedCrossRefGoogle Scholar
  127. 127.
    Akbar AN, Salmon M. Cellular environments and apoptosis: tissue microenvironments control activated T-cell death. Immunol Today. 1997;18:72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Eming SA, Werner S, Bugnon P, Wickenhauser C, Siewe L, Utermöhlen O, et al. Accelerated wound closure in mice deficient for interleukin-10. Am J Pathol. 2007;170(1):188–202.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000;192(8):1197–204.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196(8):1025–37.Google Scholar
  131. 131.
    Ploeger DTA, Hosper NA, Schipper M, Koerts JA, De Rond S, Bank RA. Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal. 2013;11:29.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Wynn T. a. Mechanism of fibrosis: therapeutic transplation for fibrotic disease. Nat Med. 2013;18(7):1028–40.CrossRefGoogle Scholar
  134. 134.
    Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol. 2013;31:317–43.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007;170(6):1807–16.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ignotz R, Massagué J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261:4337–45.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Mishra R, Zhu L, Eckert RL, Simonson MS. TGF-beta-regulated collagen type I accumulation: role of Src-based signals. Am J Physiol Cell Physiol. 2007;292(4):C1361–9.Google Scholar
  138. 138.
    Pakshir P, Hinz B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 2018;68–69:81–93.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    McLennan IS. Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J Anat. 1996;188(Pt 1):17–28.Google Scholar
  140. 140.
    Saclier M, Yacoub-Youssef H, Mackey a L, Arnold L, Ardjoune H, Magnan M, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells. 2013;31(2):384–96.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Perdiguero E, Sousa-victor P, Ruiz-bonilla V, Caelles C, Serrano AL. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol. 2011;195(2):307–22.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Cheng M, Nguyen M-H, Fantuzzi G, Koh TJ. Endogenous interferon- is required for efficient skeletal muscle regeneration. AJP Cell Physiol. 2008;294(5):C1183–91.CrossRefGoogle Scholar
  143. 143.
    Knipper JA, Willenborg S, Brinckmann J, Bloch W, Rothenberg ME, Niehoff A, et al. Interleukin-4 receptor α signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity. 2016;43(4):803–16.CrossRefGoogle Scholar
  144. 144.
    Virchenko O, Skoglund B, Aspenberg P. Parecoxib impairs early tendon repair but improves later remodeling. Am J Sports Med. 2004;32(7):1743–7.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Van Linthout S, Miteva K, Tschöpe C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102:258–69.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Dakin SG, Newton J, Martinez FO, Hedley R, Gwilym S, Jones N, et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture. Br J Sports Med. 2018;52(6):359–67.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Pap T, Müller-Ladner U, Gay RE, Gay S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2000;2:361–7.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Lempainen L, Johansson K, Banke IJ, Ranne J, Makela K, Sarimo J, et al. Expert opinion: diagnosis and treatment of proximal hamstring tendinopathy. Muscles Ligaments Tendons J. 2015;5(1):23–8.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Benazzo F, Marullo M, Zanon G, Indino C, Pelillo F. Surgical management of chronic proximal hamstring tendinopathy in athletes: a 2 to 11 years of follow-up. J Orthop Traumatol. 2013;14(2):83–9.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Kongsgaard M, Qvortrup K, Larsen J, Aagaard P, Doessing S, Hansen P, et al. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training. Am J Sports Med. 2010;38(4):749–56.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Pingel J, Lu Y, Starborg T, Fredberg U, Langberg H, Nedergaard A, et al. 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling. J Anat. 2014;224(5):548–55.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Kragsnaes MS, Fredberg U, Stribolt K, Kjaer SG, Bendix K, Ellingsen T. Stereological quantification of immune-competent cells in baseline biopsy specimens from achilles tendons: results from patients with chronic tendinopathy followed for more than 4 years. Am J Sports Med. 2014;42(10):2435–45.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Lian Ø, Scott A, Engebretsen L, Bahr R, Duronio V, Khan K. Excessive apoptosis in patellar tendinopathy in athletes. Am J Sports Med. 2007;35(4):605–11.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Schubert TEO, Weidler C, Lerch K, Hofstädter F, Straub RH. Achilles tendinosis is associated with sprouting of substance P positive nerve fibres. Ann Rheum Dis. 2005;64(7):1083–6.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Andersson G, Danielson P, Alfredson H, Forsgren S. Nerve-related characteristics of ventral paratendinous tissue in chronic Achilles tendinosis. Knee Surg Sport Traumatol Arthrosc. 2007;15(10):1272–9.CrossRefGoogle Scholar
  156. 156.
    Glazebrook MA, Wright JR, Langman M, Stanish WD, Lee JM. Histological analysis of Achilles tendons in an overuse rat model. J Orthop Res. 2008;26(6):840–6.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Pingel J, Wienecke J, Kongsgaard M, Behzad H, Abraham T, Langberg H, et al. Increased mast cell numbers in a calcaneal tendon overuse model. Scand J Med Sci Sport. 2013;23(6):353–60.CrossRefGoogle Scholar
  158. 158.
    Matthews TJW. Pathology of the torn rotator cuff tendon: reduction in potential for repair as tear size increases. J Bone Joint Surg. 2006;88-B(4):489–95.CrossRefGoogle Scholar
  159. 159.
    Kvist MH, Lehto MU k, Jozsa L, Järvinen M, Kvist HT. Chronic Achilles paratenonitis: an immunohistologic study of fibronectin and fibrinogen. Am J Sports Med. 1988;16(6):616–23.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Lempainen L, Sarimo J, Mattila K, Vaittinen S, Orava S. Proximal hamstring tendinopathy: results of surgical management and histopathologic findings. Am J Sports Med. 2009;37(4):727–34.CrossRefGoogle Scholar
  161. 161.
    Gross MT. Chronic tendinitis: pathomechanics of injury, factors affecting the healing response, and treatment. J Orthop Sport Phys Ther. 1992;16(6):248–61.CrossRefGoogle Scholar
  162. 162.
    Millar NL, Hueber AJ, Reilly JH, Yinghua X, Fazzi UG, Murrell GAC, et al. Inflammation is present in early human tendinopathy. Am J Sports Med. 2010;38(10):2085–91.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Jones GC, Corps AN, Pennington CJ, Clark IM, Edwards DR, Bradley MM, et al. Expression profiling of metalloproteinases and tissue inhibitors of metalloproteinases in normal and degenerate human Achilles tendon. Arthritis Rheum. 2006;54(3):832–42.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Heinemeier KM, Schjerling P, Øhlenschlæger TF, Eismark C, Olsen J, Kjær M. Carbon-14 bomb pulse dating shows that tendinopathy is preceded by years of abnormally high collagen turnover. FASEB J. 2018;32(9):4763–75.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Legerlotz K, Jones ER, Screen HRC, Riley GP. Increased expression of IL-6 family members in tendon pathology. Rheumatol (UK). 2012;51(7):1161–5.CrossRefGoogle Scholar
  166. 166.
    Beyer R, Kongsgaard M, Hougs Kjær B, Øhlenschlæger T, Kjær M, Magnusson SP. Heavy slow resistance versus eccentric training as treatment for achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2015;43(7):1704–11.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Alfredson H, Pietilä T, Jonsson P, Lorentzon R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 1998;26(3):360–6.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Kongsgaard M, Kovanen V, Aagaard P, Doessing S, Hansen P, Laursen AH, et al. Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy. Scand J Med Sci Sport. 2009;19(6):790–802.CrossRefGoogle Scholar
  169. 169.
    Rio E, Kidgell D, Purdam C, Gaida J, Moseley GL, Pearce AJ, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015;49(19):1277–83.CrossRefGoogle Scholar
  170. 170.
    Rio E, Van Ark M, Docking S, Moseley GL, Kidgell D, Gaida JE, et al. Isometric contractions are more analgesic than isotonic contractions for patellar tendon pain: an in-season randomized clinical trial. Clin J Sport Med. 2017;27(3):253–9.CrossRefGoogle Scholar
  171. 171.
    Heinemeier KM, Olesen JL, Haddad F, Langberg H, Kjaer M, Baldwin KM, et al. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol. 2007;582(3):1303–16.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, et al. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol. 2006;102(2):573–81.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Garma T, Kobayashi C, Haddad F, Adams GR, Bodell PW, Baldwin KM. Similar acute molecular responses to equivalent volumes of isometric, lengthening, or shortening mode resistance exercise. J Appl Physiol. 2006;102(1):135–43.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Dideriksen K, Sindby AK, Krogsgaard M, Schjerling P, Holm L, Langberg H. Effect of acute exercise on patella tendon protein synthesis and gene expression. Springerplus. 2013;2:109.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Broberg A, Heino J. Integrin α2β1-dependent contraction of floating collagen gels and induction of collagenase are inhibited by tyrosine kinase inhibitors. Exp Cell Res. 1996;228(1):29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Zhu J, Li J, Wang B, Zhang WJ, Zhou G, Cao Y, et al. The regulation of phenotype of cultured tenocytes by microgrooved surface structure. Biomaterials. 2010;31(27):6952–8.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Schoenenberger AD, Foolen J, Moor P, Silvan U, Snedeker JG. Substrate fiber alignment mediates tendon cell response to inflammatory signaling. Acta Biomater. 2018;71:306–17.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Kjær M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, et al. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009;19:500–10.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Gardner K, Arnoczky SP, Caballero O, Lavagnino M. The effect of stress-deprivation and cyclic loading on the TIMP/MMP ratio in tendon cells: an in vitro experimental study. Disabil Rehabil. 2008;30(20–22):1523–9.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Young NJ, Becker DL, Fleck RA, Goodship AE, Patterson-Kane JC. Maturational alterations in gap junction expression and associated collagen synthesis in response to tendon function. Matrix Biol. 2009;28(6):311–23.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Waggett AD, Benjamin M, Ralphs JR. Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol. 2006;85(11):1145–54.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Flynn BP, Bhole AP, Saeidi N, Liles M, Dimarzio CA, Ruberti JW. Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLoS One. 2010;5(8):e12337.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, Institute of Sports Medicine CopenhagenUniversity of CopenhagenCopenhagenDenmark
  2. 2.Faculty of Medicine and Health SciencesTampere University Hospital, Tampere UniversityTampereFinland

Personalised recommendations