Advertisement

When Hamstring Injury Rehabilitation Fails

Chapter
  • 649 Downloads

Abstract

Treatment failure is defined as an unsuccessful result of management, and this is observed frequently in acute and long-standing hamstring injuries. The main causes of treatment failure are an incorrect diagnosis or inefficacy of treatment. This chapter will describe the differential diagnoses that can be considered in patients with treatment failure after acute and long-standing hamstring injuries. Reevaluation of the patient and expanding diagnostic workup can be useful to identify other causes of posterior thigh or buttock pain. If the diagnosis remains within the category of acute hamstring injury, hamstring injury sequela, or hamstring tendinopathy, alternative treatments can be considered. Numerous alternative treatment options are available for this patient group. This chapter describes which treatments can be considered and what the current level of evidence for their efficacy is.

Keywords

Treatment failure Incorrect diagnosis Inadequate treatment Differential diagnosis Alternative treatment Injection therapy Surgery 

References

  1. 1.
    Goom TS, Malliaras P, Reiman MP, Purdam CR. Proximal hamstring tendinopathy: clinical aspects of assessment and management. J Orthop Sports Phys Ther. 2016;46(6):483–93.CrossRefGoogle Scholar
  2. 2.
    de Vos RJ, Reurink G, Goudswaard GJ, Moen MH, Weir A, Tol JL. Clinical findings just after return to play predict hamstring re-injury, but baseline MRI findings do not. Br J Sports Med. 2014;48(18):1377–84.CrossRefGoogle Scholar
  3. 3.
    de Visser HM, Reijman M, Heijboer MP, Bos PK. Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med. 2012;46(2):124–30.CrossRefGoogle Scholar
  4. 4.
    Wangensteen A, Almusa E, Boukarroum S, Farooq A, Hamilton B, Whiteley R, et al. MRI does not add value over and above patient history and clinical examination in predicting time to return to sport after acute hamstring injuries: a prospective cohort of 180 male athletes. Br J Sports Med. 2015;49(24):1579–87.CrossRefGoogle Scholar
  5. 5.
    Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, et al. Platelet-rich plasma injections in acute muscle injury. N Engl J Med. 2014;370(26):2546–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    van der Plas A, de Jonge S, de Vos RJ, van der Heide HJ, Verhaar JA, Weir A, et al. A 5-year follow-up study of Alfredson’s heel-drop exercise programme in chronic midportion Achilles tendinopathy. Br J Sports Med. 2012;46(3):214–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, et al. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study. Br J Sports Med. 2015;49(18):1206–12.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    van der Made AD, Reurink G, Gouttebarge V, Tol JL, Kerkhoffs GM. Outcome after surgical repair of proximal hamstring avulsions: a systematic review. Am J Sports Med. 2015;43(11):2841–51.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Beatty NR, Felix I, Hettler J, Moley PJ, Wyss JF. Rehabilitation and prevention of proximal hamstring tendinopathy. Curr Sports Med Rep. 2017;16(3):162–71.CrossRefGoogle Scholar
  10. 10.
    Hofmann KJ, Paggi A, Connors D, Miller SL. Complete avulsion of the proximal hamstring insertion: functional outcomes after nonsurgical treatment. J Bone Joint Surg Am. 2014;96(12):1022–5.PubMedCrossRefGoogle Scholar
  11. 11.
    van der Made AD, Peters RW, Verheul C, Maas M, Kerkhoffs GM. Abduction in proximal hamstring tendon avulsion injury mechanism—a report on 3 athletes. Clin J Sport Med. 2017.Google Scholar
  12. 12.
    Ferlic PW, Sadoghi P, Singer G, Kraus T, Eberl R. Treatment for ischial tuberosity avulsion fractures in adolescent athletes. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):893–7.CrossRefGoogle Scholar
  13. 13.
    Gidwani S, Bircher MD. Avulsion injuries of the hamstring origin – a series of 12 patients and management algorithm. Ann R Coll Surg Engl. 2007;89(4):394–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schuett DJ, Bomar JD, Pennock AT. Pelvic apophyseal avulsion fractures: a retrospective review of 228 cases. J Pediatr Orthop. 2015;35(6):617–23.CrossRefGoogle Scholar
  15. 15.
    Obey MR, Broski SM, Spinner RJ, Collins MS, Krych AJ. Anatomy of the adductor Magnus origin: implications for proximal hamstring injuries. Orthop J Sports Med. 2016;4(1):2325967115625055.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745–64.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Stares J, Dawson B, Peeling P, Drew M, Heasman J, Rogalski B, et al. How much is enough in rehabilitation? High running workloads following lower limb muscle injury delay return to play but protect against subsequent injury. J Sci Med Sport. 2018;21(10):1019–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2016;50(23):1467–72PubMedCrossRefGoogle Scholar
  19. 19.
    Askling CM, Nilsson J. Thorstensson A. a new hamstring test to complement the common clinical examination before return to sport after injury. Knee Surg Sports Traumatol Arthrosc. 2010;18(12):1798–803.CrossRefGoogle Scholar
  20. 20.
    Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs short muscle length eccentric training. Front Physiol. 2016;7:340.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Orchard J, Best TM, Verrall GM. Return to play following muscle strains. Clin J Sport Med. 2005;15(6):436–41.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Alessandrino F, Balconi G. Complications of muscle injuries. J Ultrasound. 2013;16(4):215–22.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Marques JP, Pinheiro JP, Santos Costa J, Moura D. Myositis ossificans of the quadriceps femoris in a soccer player. BMJ Case Rep. 2015;2015.Google Scholar
  25. 25.
    Orava S, Sinikumpu JJ, Sarimo J, Lempainen L, Mann G, Hetsroni I. Surgical excision of symptomatic mature posttraumatic myositis ossificans: characteristics and outcomes in 32 athletes. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3961–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Walczak BE, Johnson CN, Howe BM. Myositis ossificans. J Am Acad Orthop Surg. 2015;23(10):612–22.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hernando MF, Cerezal L, Perez-Carro L, Abascal F, Canga A. Deep gluteal syndrome: anatomy, imaging, and management of sciatic nerve entrapments in the subgluteal space. Skelet Radiol. 2015;44(7):919–34.CrossRefGoogle Scholar
  28. 28.
    Campbell WW, Landau ME. Controversial entrapment neuropathies. Neurosurg Clin N Am. 2008;19(4):597–608.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Martin R, Martin HD, Kivlan BR. Nerve entrapment in the hip region: current concepts review. Int J Sports Phys Ther. 2017;12(7):1163–73.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Meknas K, Christensen A, Johansen O. The internal obturator muscle may cause sciatic pain. Pain. 2003;104(1–2):375–80.CrossRefGoogle Scholar
  31. 31.
    Carro LP, Hernando MF, Cerezal L, Navarro IS, Fernandez AA, Castillo AO. Deep gluteal space problems: piriformis syndrome, ischiofemoral impingement and sciatic nerve release. Muscles Ligaments Tendons J. 2016;6(3):384–96.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mobbs RJ, Szkandera B, Blum P. Posterior femoral cutaneous nerve entrapment neuropathy: operative exposure and technique. Br J Neurosurg. 2002;16(3):309–11.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Collaborators I. Diagnosis and management of iliac artery endofibrosis: results of a Delphi consensus study. Eur J Vasc Endovasc Surg. 2016;52(1):90–8.CrossRefGoogle Scholar
  34. 34.
    Lutterbach-Penna RA, Kalume-Brigido M, Robertson BL, Jacobson JA, Girish G, Fessell DP. Deep vein thrombosis simulating hamstring injury on sonography. J Ultrasound Med. 2012;31(4):660–2.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kahn SR, et al. Correction. The postthrombotic syndrome: evidence-based prevention, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation. 2015;131(8):e359.PubMedPubMedCentralGoogle Scholar
  36. 36.
    DeFranco MJ, Recht M, Schils J, Parker RD. Stress fractures of the femur in athletes. Clin Sports Med. 2006;25(1):89–103.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Davis KW. Imaging of the hamstrings. Semin Musculoskelet Radiol. 2008;12(1):28–41.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Van Mieghem IM, Boets A, Sciot R, Van Breuseghem I. Ischiogluteal bursitis: an uncommon type of bursitis. Skelet Radiol. 2004;33(7):413–6.CrossRefGoogle Scholar
  39. 39.
    Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading in the right direction? Br J Sports Med. 2012;46(2):81–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    van der Made AD, Almusa E, Reurink G, Whiteley R, Weir A, Hamilton B, et al. Intramuscular tendon injury is not associated with an increased hamstring reinjury rate within 12 months after return to play. In: Br J Sports Med; 2018;52(19):1261–66PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Comin J, Malliaras P, Baquie P, Barbour T, Connell D. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med. 2013;41(1):111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Entwisle T, Ling Y, Splatt A, Brukner P, Connell D, Distal Musculotendinous T. Junction injuries of the biceps femoris: an MRI case review. Orthop J Sports Med. 2017;5(7):2325967117714998.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Opar DA, Drezner J, Shield A, Williams M, Webner D, Sennett B, et al. Acute hamstring strain injury in track-and-field athletes: a 3-year observational study at the Penn Relay Carnival. Scand J Med Sci Sports. 2014;24(4):e254–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Timmins RG, Ruddy JD, Presland J, Maniar N, Shield AJ, Williams MD, Opar DA. Architectural changes of the biceps femoris long head after concentric or eccentric training. Med Sci Sports Exerc. 2016;48(3):499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tol JL, Hamilton B, Eirale C, Muxart P, Jacobsen P, Whiteley R. At return to play following hamstring injury the majority of professional football players have residual isokinetic deficits. Br J Sports Med. 2014;48(18):1364–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mair SD, Seaber AV, Glisson RR, Garrett WE Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am J Sports Med. 1996;24(2):137–43.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Roksund OD, Kristoffersen M, Bogen BE, Wisnes A, Engeseth MS, Nilsen AK, et al. Higher drop in speed during a repeated sprint test in soccer players reporting former hamstring strain injury. Front Physiol. 2017;8:25.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lord C, Ma’ayah F, Blazevich AJ. Change in knee flexor torque after fatiguing exercise identifies previous hamstring injury in football players. Scand J Med Sci Sports. 2018;28(3):1235–43.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Toohey LA, Drew MK, Cook JL, Finch CF, Gaida JE. Is subsequent lower limb injury associated with previous injury? A systematic review and meta-analysis. Br J Sports Med. 2017;51(23):1670–8.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sherry MA, Best TM. A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sports Phys Ther. 2004;34(3):116–25.CrossRefGoogle Scholar
  52. 52.
    Gabbe BJ, Bennell KL, Finch CF. Why are older Australian football players at greater risk of hamstring injury? J Sci Med Sport. 2006;9(4):327–33.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Chumanov ES, Heiderscheit BC, Thelen DG. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J Biomech. 2007;40(16):3555–62.CrossRefGoogle Scholar
  54. 54.
    Higashihara A, Nagano Y, Takahashi K, Fukubayashi T. Effects of forward trunk lean on hamstring muscle kinematics during sprinting. J Sports Sci. 2015;33(13):1366–75.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Charlton PC, Raysmith B, Wollin M, Rice S, Purdam C, Clark RA, et al. Knee flexion not hip extension strength is persistently reduced following hamstring strain injury in Australian Football athletes: implications for periodic health examinations. J Sci Med Sport. 2018.Google Scholar
  56. 56.
    Besier TF, Sturnieks DL, Alderson JA, Lloyd DG. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech. 2003;36(8):1159–68.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Bourne MN, Williams MD, Opar DA, Al Najjar A, Kerr GK, Shield AJ. Impact of exercise selection on hamstring muscle activation. Br J Sports Med. 2017;51(13):1021–8.CrossRefGoogle Scholar
  58. 58.
    Mendiguchia J, Garrues MA, Cronin JB, Contreras B, Los Arcos A, Malliaropoulos N, et al. Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J Strength Cond Res. 2013;27(3):574–81.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Bourne MN, Opar DA, Williams MD, Al Najjar A, Shield AJ. Muscle activation patterns in the Nordic hamstring exercise: impact of prior strain injury. Scand J Med Sci Sports. 2016;26(6):666–74.CrossRefGoogle Scholar
  60. 60.
    Silder A, Heiderscheit BC, Thelen DG, Enright T, Tuite MJ. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skelet Radiol. 2008;37(12):1101–9.CrossRefGoogle Scholar
  61. 61.
    Schuermans J, Van Tiggelen D, Danneels L, Witvrouw E. Susceptibility to hamstring injuries in soccer: a prospective study using muscle functional magnetic resonance imaging. Am J Sports Med. 2016;44(5):1276–85.Google Scholar
  62. 62.
    Lempainen L, Johansson K, Banke IJ, Ranne J, Makela K, Sarimo J, et al. Expert opinion: diagnosis and treatment of proximal hamstring tendinopathy. Muscles Ligaments Tendons J. 2015;5(1):23–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lempainen L, Sarimo J, Mattila K, Vaittinen S, Orava S. Proximal hamstring tendinopathy: results of surgical management and histopathologic findings. Am J Sports Med. 2009;37(4):727–34.CrossRefGoogle Scholar
  64. 64.
    Ackermann PW, Hart DA. General overview and summary of concepts regarding tendon disease topics addressed related to metabolic disorders. Adv Exp Med Biol. 2016;920:293–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rio E, Kidgell D, Moseley GL, Cook J. Elevated corticospinal excitability in patellar tendinopathy compared with other anterior knee pain or no pain. Scand J Med Sci Sports. 2016;26(9):1072–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Rio E, Kidgell D, Purdam C, Gaida J, Moseley GL, Pearce AJ, et al. Isometric exercise induces analgesia and reduces inhibition in patellar tendinopathy. Br J Sports Med. 2015;49(19):1277–83.CrossRefGoogle Scholar
  67. 67.
    O’Neill S, Radia J, Bird K, Rathleff MS, Bandholm T, Jorgensen M, et al. Acute sensory and motor response to 45-s heavy isometric holds for the plantar flexors in patients with Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2019;27(9):2765–73.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Fredericson M, Moore W, Guillet M, Beaulieu C. High hamstring tendinopathy in runners: meeting the challenges of diagnosis, treatment, and rehabilitation. Phys Sportsmed. 2005;33(5):32–43.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Jayaseelan DJ, Moats N, Ricardo CR. Rehabilitation of proximal hamstring tendinopathy utilizing eccentric training, lumbopelvic stabilization, and trigger point dry needling: 2 case reports. J Orthop Sports Phys Ther. 2014;44(3):198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46(3):163–8.CrossRefGoogle Scholar
  71. 71.
    Kongsgaard M, Kovanen V, Aagaard P, Doessing S, Hansen P, Laursen AH, et al. Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy. Scand J Med Sci Sports. 2009;19(6):790–802.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cushman D, Rho ME. Conservative treatment of subacute proximal hamstring tendinopathy using eccentric exercises performed with a treadmill: a case report. J Orthop Sports Phys Ther. 2015;45(7):557–62.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rio E, Moseley L, Purdam C, Samiric T, Kidgell D, Pearce AJ, et al. The pain of tendinopathy: physiological or pathophysiological? Sports Med. 2014;44(1):9–23.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, et al. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009;19(4):500–10.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Drew MK, Purdam C. Time to bin the term ‘overuse’ injury: is ‘training load error’ a more accurate term? Br J Sports Med. 2016;50(22):1423–4.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Cook JL, Purdam CR. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br J Sports Med. 2009;43(6):409–16.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Duchesne E, Dufresne SS, Dumont NA. Impact of inflammation and anti-inflammatory modalities on skeletal muscle healing: from fundamental research to the clinic. Phys Ther. 2017;97(8):807–17.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Reynolds JF, Noakes TD, Schwellnus MP, Windt A, Bowerbank P. Non-steroidal anti-inflammatory drugs fail to enhance healing of acute hamstring injuries treated with physiotherapy. S Afr Med J. 1995;85(6):517–22.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Mishra DK, Friden J, Schmitz MC, Lieber RL. Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function. J Bone Joint Surg Am. 1995;77(10):1510–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Warren P, Gabbe BJ, Schneider-Kolsky M, Bennell KL. Clinical predictors of time to return to competition and of recurrence following hamstring strain in elite Australian footballers. Br J Sports Med. 2010;44(6):415–9.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Jarvinen TA, Jarvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J. 2013;3(4):337–45.PubMedCrossRefGoogle Scholar
  82. 82.
    Hamilton B, Knez W, Eirale C, Chalabi H. Platelet enriched plasma for acute muscle injury. Acta Orthop Belg. 2010;76(4):443–8.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hamilton BH, Best TM. Platelet-enriched plasma and muscle strain injuries: challenges imposed by the burden of proof. Clin J Sport Med. 2011;21(1):31–6.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Grassi A, Napoli F, Romandini I, Samuelsson K, Zaffagnini S, Candrian C, et al. Is platelet-rich plasma (PRP) effective in the treatment of acute muscle injuries? A systematic review and meta-analysis. Sports Med. 2018;48(4):971–89.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Contreras-Munoz P, Torrella JR, Serres X, Rizo-Roca D, De la Varga M, Viscor G, et al. Postinjury exercise and platelet-rich plasma therapies improve skeletal muscle healing in rats but are not synergistic when combined. Am J Sports Med. 2017;45(9):2131–41.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Brock J, Golding D, Smith PM, Nokes L, Kwan A, Lee PYF. Update on the role of Actovegin in musculoskeletal medicine: a review of the past 10 years. Clin J Sport Med. 2018.Google Scholar
  87. 87.
    Lee P, Rattenberry A, Connelly S, Nokes L. Our experience on Actovegin, is it cutting edge? Int J Sports Med. 2011;32(4):237–41.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Schneider C. Traumeel – an emerging option to nonsteroidal anti-inflammatory drugs in the management of acute musculoskeletal injuries. Int J Gen Med. 2011;4:225–34.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Wright-Carpenter T, Klein P, Schaferhoff P, Appell HJ, Mir LM, Wehling P. Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med. 2004;25(8):588–93.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kobayashi M, Ota S, Terada S, Kawakami Y, Otsuka T, Fu FH, et al. The combined use of losartan and muscle-derived stem cells significantly improves the functional recovery of muscle in a young mouse model of contusion injuries. Am J Sports Med. 2016;44(12):3252–61.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ota S, Uehara K, Nozaki M, Kobayashi T, Terada S, Tobita K, et al. Intramuscular transplantation of muscle-derived stem cells accelerates skeletal muscle healing after contusion injury via enhancement of angiogenesis. Am J Sports Med. 2011;39(9):1912–22.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Bodendorfer BM, Curley AJ, Kotler JA, Ryan JM, Jejurikar NS, Kumar A, et al. Outcomes after operative and nonoperative treatment of proximal Hamstring avulsions: a systematic review and meta-analysis. Am J Sports Med. 2018;46(11):2798–808.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Buckwalter J, Westermann R, Amendola A. Complete proximal hamstring avulsions: is there a role for conservative management? A systematic review of acute repairs and non-operative management journal of ISAKOS: Joint Disorders & Orthopaedic. Sports Med. 2017;2:31–5.Google Scholar
  94. 94.
    Cohen SB, Rangavajjula A, Vyas D, Bradley JP. Functional results and outcomes after repair of proximal hamstring avulsions. Am J Sports Med. 2012;40(9):2092–8.CrossRefGoogle Scholar
  95. 95.
    Cohen S, Bradley J. Acute proximal hamstring rupture. J Am Acad Orthop Surg. 2007;15(6):350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wood DG, Packham I, Trikha SP, Linklater J. Avulsion of the proximal hamstring origin. J Bone Joint Surg Am. 2008;90(11):2365–74.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury. Skelet Radiol. 2003;32(10):582–9.CrossRefGoogle Scholar
  98. 98.
    Lempainen L, Sarimo J, Mattila K, Heikkila J, Orava S, Puddu G. Distal tears of the hamstring muscles: review of the literature and our results of surgical treatment. Br J Sports Med. 2007;41(2):80–3.Google Scholar
  99. 99.
    Brukner P, Connell D. Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains. Br J Sports Med. 2016;50(4):205–8.CrossRefGoogle Scholar
  100. 100.
    Pollock N, Patel A, Chakraverty J, Suokas A, James SL, Chakraverty R. Time to return to full training is delayed and recurrence rate is higher in intratendinous (‘c’) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med. 2016;50(5):305–10.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    van der Made AD, Almusa E, Whiteley R, Hamilton B, Eirale C, van Hellemondt F, et al. Intramuscular tendon involvement on MRI has limited value for predicting time to return to play following acute hamstring injury. Br J Sports Med. 2018;52(2):83–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lempainen L, Kosola J, Pruna R, Puigdellivol J, Sarimo J, Niemi P, et al. Central tendon injuries of hamstring muscles: case series of operative treatment. Orthop J Sports Med. 2018;6(2):2325967118755992.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ekstrand J, Hagglund M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.CrossRefGoogle Scholar
  104. 104.
    Wangensteen A, Tol JL, Witvrouw E, Van Linschoten R, Almusa E, Hamilton B, et al. Hamstring reinjuries occur at the same location and early after return to sport: a descriptive study of MRI-confirmed reinjuries. Am J Sports Med. 2016;44(8):2112–21.CrossRefGoogle Scholar
  105. 105.
    Scott A, Huisman E, Khan K. Conservative treatment of chronic Achilles tendinopathy. CMAJ. 2011;183(10):1159–65.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Cacchio A, Rompe JD, Furia JP, Susi P, Santilli V, De Paulis F. Shockwave therapy for the treatment of chronic proximal hamstring tendinopathy in professional athletes. Am J Sports Med. 2011;39(1):146–53.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Mani-Babu S, Morrissey D, Waugh C, Screen H, Barton C. The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review. Am J Sports Med. 2015;43(3):752–61.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Korakakis V, Whiteley R. The effectiveness of ESWT in lower limb tendinopathy: letter to the editor. Am J Sports Med. 2015;43(10):NP43–4.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Zissen MH, Wallace G, Stevens KJ, Fredericson M, Beaulieu CF. High hamstring tendinopathy: MRI and ultrasound imaging and therapeutic efficacy of percutaneous corticosteroid injection. AJR Am J Roentgenol. 2010;195(4):993–8.CrossRefGoogle Scholar
  110. 110.
    Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet. 2010;376(9754):1751–67.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Seeger JD, West WA, Fife D, Noel GJ, Johnson LN, Walker AM. Achilles tendon rupture and its association with fluoroquinolone antibiotics and other potential risk factors in a managed care population. Pharmacoepidemiol Drug Saf. 2006;15(11):784–92.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Kearney RS, Parsons N, Metcalfe D, Costa ML. Injection therapies for Achilles tendinopathy. Cochrane Database Syst Rev. 2015;5:CD010960.Google Scholar
  113. 113.
    Davenport KL, Campos JS, Nguyen J, Saboeiro G, Adler RS, Moley PJ. Ultrasound-guided intratendinous injections with platelet-rich plasma or autologous whole blood for treatment of proximal hamstring tendinopathy: a double-blind randomized controlled trial. J Ultrasound Med. 2015;34(8):1455–63.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    van der Made AD, Wieldraaijer T, Kerkhoffs GM, Kleipool RP, Engebretsen L, van Dijk CN, et al. The hamstring muscle complex. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2115–22.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Benazzo F, Marullo M, Zanon G, Indino C, Pelillo F. Surgical management of chronic proximal hamstring tendinopathy in athletes: a 2 to 11 years of follow-up. J Orthop Traumatol. 2013;14(2):83–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Paavola M, Kannus P, Orava S, Pasanen M, Jarvinen M. Surgical treatment for chronic Achilles tendinopathy: a prospective seven month follow up study. Br J Sports Med. 2002;36(3):178–82.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Orthopaedics and Sports MedicineErasmus MC University Medical CentreRotterdamThe Netherlands
  2. 2.Department of Orthopaedic Surgery, Amsterdam UMCUniversity of Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
  3. 3.Academic Center for Evidence-Based Sports Medicine (ACES)Amsterdam UMCAmsterdamThe Netherlands
  4. 4.Amsterdam Collaboration for Health and Safety in Sports (ACHSS)AMC/VUmc IOC Research CenterAmsterdamThe Netherlands
  5. 5.Physiotherapy DepartmentUniversity of CanberraBruceAustralia
  6. 6.La Trobe UniversityBundooraAustralia
  7. 7.Department of Orthopedic Surgery, Sports Orthopedic Research Center—Copenhagen (SORC-C)Amager-Hvidovre Hospital, Copenhagen UniversityCopenhagenDenmark

Personalised recommendations