Skip to main content

Computational Fluid Dynamics Study of Inlet Velocity on Extrusion-Based Bioprinting

  • Conference paper
  • First Online:

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

Extrusion bioprinting is one of the most studied additive manufacturing technologies thanks to the huge possibilities in the creation of engineered tissues that it provides. Despite all research performed about bioprinting there is not enough information on how inlet velocities affect the pressure distribution. In this way, we have carried out CFD simulations to check how different inlet velocities can affect the pressure distribution in the tip of a nozzle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kang, H.-W., Yoo, J.J., Atala, A.: Bioprinted scaffolds for cartilage tissue engineering. Cartil. Tissue Eng. Methods Protoc. 1340, 981–995 (2015)

    Google Scholar 

  2. Hesuani, Y.D., et al.: Design and Implementation of Novel Multifunctional 3D Bioprinter. 3d Print. Addit. Manuf. 3(1), 65–68 (2016)

    Google Scholar 

  3. Cubo, N., Garcia, M., del Cañizo, J.F., Velasco, D., Jorcano, J.L.: 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9(1), 15006 (2016)

    Article  Google Scholar 

  4. Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015)

    Article  Google Scholar 

  5. He, Y., Yang, F., Zhao, H., Gao, Q., Xia, B., Fu, J.: Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016)

    Article  Google Scholar 

  6. Panwar, A., Tan, L.P.: Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6), E685 (2016)

    Article  Google Scholar 

  7. Alberts, B., et al.: Mollecular biology of the cell. In: Anderson, M., Granum, S. (eds.) Garland Science, Taylor & Francis Group, LLC (2008)

    Google Scholar 

  8. Zhao, Y., Li, Y., Mao, S., Sun, W., Yao, R.: The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7(4), 1–11 (2015)

    Article  Google Scholar 

  9. Pati, F., Jang, J., Lee, J.W., Cho, D.W.: Extrusion bioprinting (2015)

    Google Scholar 

  10. Ozbolat, I.T., Moncal, K.K., Gudapati, H.: Evaluation of bioprinter technologies. Addit. Manuf. 13, 179–200 (2017)

    Article  Google Scholar 

  11. Ning, L., Chen, X.: A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol. J. 12(8), 1–16 (2017)

    Article  Google Scholar 

  12. Yuan, W., Schnerr, G.H.: Numerical simulation of two-phase flow in injection nozzles: interaction of cavitation and external jet formation. J. Fluids Eng. 125(6), 963–969 (2004)

    Article  Google Scholar 

  13. Zekovic, S., Dwivedi, R., Kovacevic, R.: Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition. Int. J. Mach. Tools Manuf. 47(1), 112–123 (2007)

    Article  Google Scholar 

  14. Reid, J.A., Mollica, P.A., Johnson, G.D., Ogle, R.C., Bruno, R.D., Sachs, P.C.: Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation. Biofabrication 8(2), 25017 (2016)

    Article  Google Scholar 

  15. Martanto, W., Baisch, S.M., Costner, E.A., Prausnitz, M.R., Smith, M.K.: Fluid dynamics in conically tapered microneedles. AIChE J. 51(6), 1599–1607 (2005)

    Article  Google Scholar 

  16. COMSOL Multiphysics: Theory for the Two-Phase Flow Interfaces - CFD Module User’s Guide. Manual, p. 620 (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Consejeráa de Economía e Infraestructuras, Junta de Extremadura. Project number IB16200 “Optimización y mejora de técnicas de bioimpresión para regeneración de cartílago y prótesis vasculares" and predoctoral grant number PD16067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Gómez-Blanco .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Blanco, J.C., Mancha-Sánchez, E., Ortega-Morán, J.F., Díaz-Parralejo, A., Sánchez-Margallo, F.M., Pagador-Carrasco, J.B. (2020). Computational Fluid Dynamics Study of Inlet Velocity on Extrusion-Based Bioprinting. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics