Advertisement

Potentials of OCT in Monitoring Ocular Hemodynamics of Patients with Primary Open Angle Glaucoma

  • E. N. Iomdina
  • D. D. Khoziev
  • A. A. KiselevaEmail author
  • P. V. Luzhnov
  • O. A. Kiseleva
  • D. M. Shamaev
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 76)

Abstract

Approaches to using optical coherence tomography (OCT) for ocular hemodynamics monitoring in patients with primary open angle glaucoma (POAG) are presented. The existing OCT systems used in ophthalmology are described. The different OCT systems are compared in accuracy and resolution characteristics, as these are important for clinical studies. The results of ocular hemodynamics monitoring of POAG patients using Spectralis OCT2 with an OCT Angiography module are given.

Keywords

Optical coherence tomography Optical coherence tomography angiography Amplitude-decorrelation angiography algorithm Glaucoma Ocular blood flow 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest. The paper was supported by a grant from RFBR (No. 18-08-01192).

References

  1. 1.
    Morizane, Y., Morimoto, N., Fujiwara, A., et al.: Incidence and causes of visual impairment in Japan: the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn. J. Ophthalmol. 63(1), 26–33 (2019)CrossRefGoogle Scholar
  2. 2.
    Quigley, H.A.: Glaucoma: macrocosm to microcosm, the Frieden wald lecture. Invest. Ophthalmol. Vis. Sci. 46, 2662–2670 (2005)CrossRefGoogle Scholar
  3. 3.
    Fechtner, R.D., Weinreb, R.N.: Mechanisms of optic nerve damage in primary open angle glaucoma. Surv. Ophthalmol. 39(1), 23–42 (1994)CrossRefGoogle Scholar
  4. 4.
    Schmetterer, L.: Ocular Blood Flow, pp. 147–159. Springer, New York (2012)CrossRefGoogle Scholar
  5. 5.
    Lieb, W.E.: Color Doppler ultrasonography of the eye and orbit. CurrentOpin. Ophthalmol. 4, 68–75 (1993)Google Scholar
  6. 6.
    Flammer, J., Orgul, S., Costa, V.P., et al.: The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21, 359–393 (2002)CrossRefGoogle Scholar
  7. 7.
    Kiseleva, T.N., Kotelin, V.I., Losanova, O.A., Lugovkina, K.V.: Noninvasive methods assessment blood flow in anterior segment and clinical application perspective. Oftalmologiya 15(4), 283–290 (2017).  https://doi.org/10.18008/1816-5095-2017-4-283-290CrossRefGoogle Scholar
  8. 8.
    Straubhaar, M., Orgul, S., Gugleta, K., et al.: Choroidal laser Doppler flowmetry in healthy subjects. Arch. Ophthalmol. 118(2), 211–215 (2000)CrossRefGoogle Scholar
  9. 9.
    Kurysheva, N.I., Parshunina, O.A., Shatalova, E.O., et al.: Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr. Eye Res. 42(3), 411–417 (2017)CrossRefGoogle Scholar
  10. 10.
    Weinreb, R., Harris, A.: Ocular Blood Flow in Glaucoma: The 6th Consensus Report of the World Glaucoma Association, pp. 1–159. Kugler Publications, Amsterdam (2009)Google Scholar
  11. 11.
    Liu, L., Jia, Y., Takusagawa, H.L., et al.: Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 133(9), 1045 (2015)CrossRefGoogle Scholar
  12. 12.
    Kurysheva, N.I., Maslova, E.V.: Optical coherence tomography angiography in glaucoma diagnosis. Vestn. oftalmol. 132(5), 98–102 (2016)CrossRefGoogle Scholar
  13. 13.
    Popescu, D.P., Choo-Smith, L.-P., Flueraru, C., Mao, Y., Chang, S., Disano, J., Sowa, M.G.: Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys. Rev. 3(3), 155–169 (2011)CrossRefGoogle Scholar
  14. 14.
    Grulkpwski, I., et al.: Scanning protocols dedicated to smart velocity ranging in Spectral OCT. Opt. Express 17, 23736–23754 (2009)CrossRefGoogle Scholar
  15. 15.
    Hendargo, H.C., McNabb, R.P., Dhalla, A.H., Shepherd, N., Izatt, J.A.: Doppler velocity detection limitations in spectrometer – based versus swept – source optical coherence tomography. Biomed. Opt. Express 2, 2175–2188 (2011)CrossRefGoogle Scholar
  16. 16.
    Wang, R.K., et al.: Three dimensional optical angiography. Opt. Express 15, 4083–4097 (2007)CrossRefGoogle Scholar
  17. 17.
    Motaghiannezam, R., Fraser, S.: Logarithmic intensity and speacle – based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography. Biomed. Opt. Express 3, 503–521 (2012)CrossRefGoogle Scholar
  18. 18.
    Jia, Y., et al.: Split – spectrum amplitude – decorrelation angiography with optical coherence tomography. Opt. Express 20, 4710–4725 (2012)CrossRefGoogle Scholar
  19. 19.
    Tokayer, J., Jia, Y., Dhalla, A.H., Huang, D.: Blood flow velocity quantification using split – spectrum amplitude decorrelation angiography with optical coherence tomography. Biomed. Opt. Express 4, 1909–1924 (2013)CrossRefGoogle Scholar
  20. 20.
    Margolis, R., Spaide, R.F.: A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am. J. Ophthalmol. 147(5), 811–815 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • E. N. Iomdina
    • 1
  • D. D. Khoziev
    • 1
  • A. A. Kiseleva
    • 2
    Email author
  • P. V. Luzhnov
    • 2
  • O. A. Kiseleva
    • 1
  • D. M. Shamaev
    • 2
  1. 1.Moscow Helmholtz Research Institute of Eye DiseasesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations