Method for Finding the Limits of Blood Vessel Landmarks in Eye Fundus Images Based on Distances in Graphs: Preliminary Results

  • Martynas PatašiusEmail author
  • Jūratė Šimkienė
  • Daivaras Sokas
  • Andrius Pranskūnas
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 76)


The paper proposes a method to process blood vessel landmarks in eye fundus images. The proposed method is based on finding a shortest cycle in a weighted graph, corresponding to a set of possible tracked blood vessel slices and paths between them. In turn, the paths are found by finding a shortest path in a weighted graph, taking gradients into account. The method has been tried out with DRIVE and IOSTAR databases.


Eye fundus Blood vessels Graph theory 



This research was funded by a grant (No. S-MIP-17-16) from the Research Council of Lithuania.


  1. 1.
    Abbasi-Sureshjani, S., Smit-Ockeloen, I., Bekkers, E., Dashtbozorg, B., ter Haar Romeny, B.: Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE (2016).
  2. 2.
    Aguiar, M., Castano, F., Trujillo, M.: Segmentation and detection of vascular bifurcations and crossings in retinal images. In: Communications in Computer and Information Science, pp. 432–443. Springer International Publishing (2018).
  3. 3.
    Al-Diri, B., Hunter, A.: Automated measurements of retinal bifurcations. In: O. Dössel, W.C. Schlegel (eds.) World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich, Germany, IFMBE Proceedings, vol. 25/XI, pp. 205–208. Springer (2009)Google Scholar
  4. 4.
    Bhuiyan, A., Nath, B., Chua, J., Ramamohanarao, K.: Automatic detection of vascular bifurcations and crossovers from color retinal fundus images. In: Third International IEEE Conference on Signal-Image Technologies and Internet-Based System 2007. SITIS 2007, pp. 711–718 (2007).
  5. 5.
    Bhuiyan, A., Nath, B., Ramamohanarao, K.: Detection and classification of bifurcation and branch points on retinal vascular network. In: 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA). IEEE (2012).
  6. 6.
    Ghanaei, Z., Pourreza, H., Banaee, T.: Automatic graph-based method for classification of retinal vascular bifurcations and crossovers. In: 2016 6th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE (2016).
  7. 7.
    Kalaie, S., Gooya, A.: Vascular tree tracking and bifurcation points detection in retinal images using a hierarchical probabilistic model. Comput. Methods Programs Biomed. 151, 139–149 (2017). Scholar
  8. 8.
    Kang, J., Heo, S., Hyung, W.J., Lim, J.S., Lee, S.: 3D active vessel tracking using an elliptical prior. IEEE Trans. Image Process. 27(12), 5933–5946 (2018). Scholar
  9. 9.
    Luo, T., Gast, T.J., Vermeer, T.J., Burns, S.A.: Retinal vascular branching in healthy and diabetic subjects. Invest. Ophthalmol. Vis. Sci. 58(5), 2685 (2017). Scholar
  10. 10.
    Mohan, V., Sundaramoorthi, G., Tannenbaum, A.: Tubular surface segmentation for extracting anatomical structures from medical imagery. IEEE Trans. Med. Imaging 29(12), 1945–1958 (2010). Scholar
  11. 11.
    Morales, S., Naranjo, V., Angulo, J., Legaz-Aparicio, A., Verdú-Monedero, R.: Retinal network characterization through fundus image processing: significant point identification on vessel centerline. Signal Process. Image Commun. 59, 50–64 (2017). Scholar
  12. 12.
    Patašius, M.: Akies dugno vaizdų automatinė analizė. Ph.D. thesis, Kauno technologijos universitetas (2010)Google Scholar
  13. 13.
    Patašius, M., Marozas, V., Jegelevičius, D., Lukoševičius, A.: Recursive algorithm for blood vessel detection in eye fundus images: preliminary results. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich, Germany, IFMBE Proceedings, vol. 25/XI, pp. 212–215. Springer, Munich (2009)Google Scholar
  14. 14.
    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). Scholar
  15. 15.
    Sutanty, E., Rahayu, D.A., Rodiah, Susetianingtias, D.T., Madenda, S.: Retinal blood vessel segmentation and bifurcation detection using combined filters. In: 2017 3rd International Conference on Science in Information Technology (ICSITech). IEEE (2017).
  16. 16.
    Treigys, P.: Grafinių oftalmologinių ir termovizinių duomenų analizės metodų kīrimas ir taikymas. Ph.D. thesis, Matematikos ir informatikos institutas (2010)Google Scholar
  17. 17.
    Tsai, C.L., Stewart, C.V., Tanenbaum, H.L., Roysam, B.: Model-based method for improving the accuracy and repeatability of estimating vascular bifurcations and crossovers from retinal fundus images. IEEE Trans. Inf Technol. Biomed. 8(2), 122–130 (2004). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Martynas Patašius
    • 1
    • 2
    Email author
  • Jūratė Šimkienė
    • 3
  • Daivaras Sokas
    • 1
  • Andrius Pranskūnas
    • 3
  1. 1.Kaunas University of Technology, Institute of Biomedical EngineeringKaunasLithuania
  2. 2.Department of Applied InformaticsKaunas University of TechnologyKaunasLithuania
  3. 3.Department of Intensive CareLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations