Advertisement

Shift-Compensated Volumetric Interpolation of Tomographic Sequences for Accurate 3D Reconstruction

  • Chiara SantarelliEmail author
  • Francesca Uccheddu
  • Fabrizio Argenti
  • Luciano Alparone
  • Monica Carfagni
  • Lapo Governi
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 76)

Abstract

In patients affected by craniosynostosis, i.e. a congenital cranial defect, diagnostic evaluation for a prompt surgical treatment is performed using low-dose three-dimensional computer tomography (CT), characterized by a poor spatial resolution (in terms of slice thickness). The limited number of CT images reduces the accuracy of the 3D reconstruction of the skull and leads to a coarser segmentation and modelling. In this paper, Motion Compensated Frame Interpolation (MCFI) techniques are applied for an effective axial interpolation of tomographic images sequences, with the main objective of obtaining a refined 3D reconstruction. The performance of the proposed method was assessed by using high-resolution CT sequences. After downsampling along the axial direction, the missing slices were recovered by using the proposed algorithm, to obtain an estimate of the original sequence. The experimental results show that the 3D models obtained from the downsampled/interpolated sequence are very close to those obtained from the original one thus providing a high-quality 3D skull reconstruction.

Keywords

CT slices Interpolation 3D modeling Motion compensation 

References

  1. 1.
    Nagaraja, S., Anslow, P., Winter, B.: Craniosynostosis. Clin. Radiol. 68(3), 284–292 (2013)CrossRefGoogle Scholar
  2. 2.
    Vannier, M.W., Hildebolt, C.F., Marsh, J.L., Pilgram, T.K., McAlister, W.H., Shackelford, G.D., Offutt, C.J., Knapp, R.H.: Craniosynostosis: diagnostic value of three-dimensional CT reconstruction. Radiology 173(3), 669–673 (1989)CrossRefGoogle Scholar
  3. 3.
    Kutanzi, K.R., Lumen, A., Koturbash, I., Miousse, I.R.: Pediatric exposures to ionizing radiation: carcinogenic considerations. Int. J. Environ. Res. Public Health 13 (2016)CrossRefGoogle Scholar
  4. 4.
    Bahreyni Toossi, M.T., Malekzadeh, M.: Radiation dose to newborns in neonatal intensive care units. Iran. J. Radiol. 9(3), 145–149 (2012)CrossRefGoogle Scholar
  5. 5.
    Volpe, Y., Furferi, R., Governi, L., Uccheddu, F., Carfagni, M., Mussa, F., Scagnet, M., Genitori, L.: Surgery of complex craniofacial defects: a single-step AM-based methodology. Comput. Methods Programs Biomed. 165, 225–233 (2018)CrossRefGoogle Scholar
  6. 6.
    Binaghi, S., Gudinchet, F., Rilliet, B.: Three-dimensional spiral CT of craniofacial malformations in children. Pediatr. Radiol. 30(12), 856–860 (2000)CrossRefGoogle Scholar
  7. 7.
    Raya, S.P., Udupa, J.K.: Shape-based interpolation of multidimensional objects. IEEE Trans. Med. Imaging 9(1), 32–42 (1990)CrossRefGoogle Scholar
  8. 8.
    Joliot, M., Mazoyer, B.M.: Three-dimensional segmentation and interpolation of magnetic resonance brain images. IEEE Trans. Med. Imaging 12(2), 269–277 (1993)CrossRefGoogle Scholar
  9. 9.
    Krishnamurthy, R., Woods, J.W., Moulin, P.: Frame interpolation and bidirectional prediction of video using compactly-encoded optical flow fields and label fields. IEEE Trans. Circuits Syst. Video Technol. 9(5), 713–726 (1997)CrossRefGoogle Scholar
  10. 10.
    Choi, B., Member, S., Han, J., Member, S.: Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation. IEE Circuits Syst. Video Technol. 17(4), 407–416 (2007)CrossRefGoogle Scholar
  11. 11.
    Dikbas, S., Altunbasak, Y.: Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation. IEE Trans. Image Process. 22(8), 2931–2945 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kim, D., Lim, H., Park, H.: Iterative true motion estimation for motion-compensated frame interpolation. IEEE Trans. Circuits Syst. Video Technol. 23(3), 445–454 (2013)CrossRefGoogle Scholar
  13. 13.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)CrossRefGoogle Scholar
  14. 14.
    Ertuk, S.: A new perspective to block motion estimation for video compression: high-frequency component matching. IEEE Signal Process. Lett. 14(2), 113–116 (2007)CrossRefGoogle Scholar
  15. 15.
    Puri, A., Hang, H.-M., Schilling, D.: An efficient block-matching algorithm for motion-compensated coding. In: Proceedings of ICASSP, pp. 1063–1066 (1987)Google Scholar
  16. 16.
    Young, R.W., Kingsbury, N.G.: Frequency-domain motion estimation using a complex lapped transform. IEEE Trans. Image Process. 2(1), 2–17 (1993)CrossRefGoogle Scholar
  17. 17.
    Pingault, M., Pellerin, D.: Motion estimation of transparent objects in the frequency domain. Signal Process. 84(4), 709–719 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Huang, A.-M., Nguyen, T.Q.: A multistage motion vector processing method for motion-compensated frame interpolation. IEEE Trans. Image Process. 17(5), 694–708 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goshtasby, A., Turner, D.A., Ackerman, L.V.: Matching of tomographic slices for interpolation. IEEE Trans. Med. Imaging 11(4), 507–516 (1992)CrossRefGoogle Scholar
  20. 20.
    Penney, G.P., Schnabel, J.A., Rueckert, D., Viergever, M.A., Niessen, W.J.: Registration-based interpolation. IEEE Trans. Med. Imaging 23(7), 922–926 (2004)CrossRefGoogle Scholar
  21. 21.
    Grevera, G.J., Udupa, J.K.: An objective comparison of 3-D image interpolation methods. IEEE Trans. Med. Imaging 17(4), 642–652 (1998)CrossRefGoogle Scholar
  22. 22.
    Leng, J., Xu, G., Zhang, Y.: Medical image interpolation based on multi-resolution registration. Comput. Math Appl. 66(1), 1–18 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Horváth, A., Pezold, S., Weigel, M., Parmar, K., Cattin, P.: High order slice interpolation for medical images. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds.) Simulation and Synthesis in Medical Imaging, SASHIMI 2017, Lecture Notes in Computer Science, vol. 10557. Springer, Cham (2017)CrossRefGoogle Scholar
  24. 24.
    Hinkle, J., Szegedi, M., Wang, B., Salter, B., Joshi, S.: 4D CT image reconstruction with diffeomorphic motion model. Med. Image Anal. 16(6), 1307–1316 (2012)CrossRefGoogle Scholar
  25. 25.
    Ehrhardt, J., Werner, R., Säring, D., Frenzel, T., Lu, W., Low, D., Handels, H.: An optical flow based method for improved reconstruction of 4D CT data sets acquired during free breathing. Med. Phys. 34(2), 21–711 (2007)CrossRefGoogle Scholar
  26. 26.
    Alparone, L., Barni, M., Bartolini, F., Cappellini, V.: Adaptively weighted vector-median filters for motion-fields smoothing. In: Proceedings of ICASSP, pp. 2267–2270 (1996)Google Scholar
  27. 27.
    Alparone, L., Barni, M., Bartolini, F., Caldelli, R.: Regularization of optic flow estimates by means of weighted vector median filtering. IEEE Trans. Image Process. 8(10), 1462–1467 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of FlorenceFlorenceItaly
  2. 2.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations