Advertisement

Long-Term Stability of EEG Spectral Asymmetry Index – Preliminary Study

  • Tuuli UudebergEmail author
  • Laura Päeske
  • Toomas Põld
  • Jaanus Lass
  • Hiie Hinrikus
  • Maie Bachmann
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 76)

Abstract

The purpose of this preliminary study was to assess the long-term stability of the electroencephalography (EEG) based spectral asymmetry index (SASI) previously proposed as an objective measure for evaluation of depression. Due to high variability between individuals, a long-term study is required to examine how SASI changes over longer period of time for an individual subject. One healthy adult was surveyed over the period of 15 months. The eyes closed resting state EEG was analyzed over 15 sessions, on average once a month. The SASI was calculated from EEG power spectrum density as a relative difference in powers of higher and lower band of the EEG spectrum maximum. The long-term stability of SASI for an individual was compared to inter-individual variability of the measure within the group of healthy subjects in our previous study. The results demonstrated that the individual long-term variability of SASI is less than inter-individual variability within a group, supporting the possibility of application of SASI for evaluation of depression symptoms for an individual. In future, the investigations should be extended on larger number of subjects to study the individual properties of SASI.

Keywords

Electroencephalography Spectral Asymmetry Index Stability 

Notes

Acknowledgment

This study was financially supported by the Estonian Ministry of Education and Research under institutional research financing IUT 19-2 and by the Estonian Centre of Excellence in IT (EXCITE) funded by the European Regional Development Fund.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hinrikus, H., Suhhova, A., Bachmann, M., et al.: Electroencephalographic spectral asymmetry index for detection of depression. Med. Biol. Eng. Comput 47(12), 1291–1299 (2009).  https://doi.org/10.1007/s11517-009-0554-9CrossRefGoogle Scholar
  2. 2.
    Bachmann, M., Lass, J., Suhhova, A., et al.: Spectral asymmetry and Higuchi’s fractal dimension measures of depression electroencephalogram. Comput. Math. Methods Med 2013, 251638 (2013).  https://doi.org/10.1155/2013/251638MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    The global burden of disease: 2004 Update. WHO (2014)Google Scholar
  4. 4.
    Knott, V., Mahoney, C., Kennedy, S., et al.: EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 106(2), 123–140 (2001).  https://doi.org/10.1016/S0925-4927(00)00080-9CrossRefGoogle Scholar
  5. 5.
    Leuchter, A.F., Cook, I.A., Hunter, A.M., et al.: Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS One 7(2), e32508 (2012).  https://doi.org/10.1371/journal.pone.0032508CrossRefGoogle Scholar
  6. 6.
    Allen, J.J., Urry, H.L., Hitt, S.K., et al.: The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology 41(2), 269–280 (2004).  https://doi.org/10.1111/j.1469-8986.2003.00149.xCrossRefGoogle Scholar
  7. 7.
    Fingelkurts, A.A., Fingelkurts, A.A., Rytsälä, H., et al.: Composition of brain oscillations in ongoing EEG during major depression disorder. Neurosci. Res. 56(2), 133–144 (2006).  https://doi.org/10.1016/j.neures.2006.06.006CrossRefGoogle Scholar
  8. 8.
    Bachmann, M., Päeske, L., Kalev, K., et al.: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis. Comput. Methods Programs Biomed. 155, 11–17 (2018).  https://doi.org/10.1016/j.cmpb.2017.11.023CrossRefGoogle Scholar
  9. 9.
    Cusin, C., Yang, H., Yeung, A., et al.: Rating scales for depression. In: Lee, B., Blais, M.A. (eds.) Handbook of Clinical Rating Scales and Assessment in Psychiatry and Mental Health, pp. 7–35. Humana Press, New York (2010)Google Scholar
  10. 10.
    Aluoja, A., Shlik, J., Vasar, V., et al.: Development and psychometric properties of the emotional state questionnaire, a self-report questionnaire for depression and anxiety. Nord. J. Psychiatry 53, 443–449 (1999).  https://doi.org/10.1080/080394899427692CrossRefGoogle Scholar
  11. 11.
    Barth, C., Villringer, A., Sacher, J.: Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 9(37) (2015).  https://doi.org/10.3389/fnins.2015.00037
  12. 12.
    Gawali, B.W., Rokade, P.B., Janvale, G.B., et al.: Ovarian hormones and the brain signals. Ann. Neurosci. 16(2), 72–74 (2009)CrossRefGoogle Scholar
  13. 13.
    Yao, D.: A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 22, 693–711 (2001).  https://doi.org/10.1088/0967-3334/22/4/305CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tuuli Uudeberg
    • 1
    Email author
  • Laura Päeske
    • 1
  • Toomas Põld
    • 2
  • Jaanus Lass
    • 1
  • Hiie Hinrikus
    • 1
  • Maie Bachmann
    • 1
  1. 1.Tallinn University of TechnologyTallinnEstonia
  2. 2.Qvalitas Medical CentreTallinnEstonia

Personalised recommendations