Skip to main content

Magnetic Carbon Nanostructures and Study of Their Transport in Microfluidic Devices for Hyperthermia

  • 138 Accesses

Part of the IFMBE Proceedings book series (IFMBE,volume 76)

Abstract

Cancer incidence and mortality are growing worldwide at an alarming pace, emphasizing the urgent need for new strategies to combat this disease. One of the frontiers of cancer research is currently focused on the design of multifunctional magnetic nanoparticles capable to achieve the synergistic cancer theranostics (both diagnosis and therapy). Although the potentiality that these multifunctional nanosystems represents to nanomedicine, cancer treatment and diagnostic, there are still many challenges that must be addressed in a near future before this approach became a reality. The development of efficient multifunctional magnetic nanosystems able to selectively destroy cancer cells in detriment of healthy ones, is one of the main challenges that have damped the spread of this technology into clinical applications. The limited biological and biophysical studies between the biomedical nanosystems and cells/tissues/organs is another challenge that has to be addressed. With these two main challenges in mind, the present Ph.D. work was focused in the development of: (1) Multifunctional magnetic carbon nanostructures as multifunctional nanosystems for the treatment of cancer, and (2) New advanced microfluidic devices capable to give new insights over the developed nanosystems and human cells.

R. O. Rodrigues—Ph.D. scholarship SFRH/BD/97658/2013 granted by FCT.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-31635-8_232
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-31635-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.

Reprinted from [7]. Copyright © 2016, with permission from Springer Nature.

Fig. 2.

Reprinted from [7]. Copyright © 2016, with permission from Springer Nature.

Fig. 3.

Reprinted from [7]. Copyright © 2016, with permission from Springer Nature.

Fig. 4.

Reprinted from [7]. Copyright © 2016, with permission from Springer Nature.

Fig. 5.

Reprinted from [7]. Copyright © 2016, with permission from Springer Nature.

Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

References

  1. Bhise, N.S., Ribas, J., Manoharan, V., Zhang, Y.S., Polini, A., Massa, S., Dokmeci, M.R., Khademhosseini, A.: Organ-on-a-chip platforms for studying drug delivery systems. J. Control. Release 190, 82–93 (2014). Official Journal of the Controlled Release Society

    CrossRef  Google Scholar 

  2. Zhang, Y.S., Zhang, Y.N., Zhang, W.: Cancer-on-a-chip systems at the frontier of nanomedicine. Drug Discov. Today 22, 1392–1399 (2017)

    CrossRef  Google Scholar 

  3. Halldorsson, S., Lucumi, E., Gómez-Sjöberg, R., Fleming, R.M.T.: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015)

    CrossRef  Google Scholar 

  4. Lima, R., Wada, S., Tanaka, S., Takeda, M., Ishikawa, T., Tsubota, K., Imai, Y., Yamaguchi, T.: In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevice 10, 153–167 (2008)

    CrossRef  Google Scholar 

  5. Chicheł, A., Skowronek, J., Kubaszewska, M., Kanikowski, M.: Hyperthermia – description of a method and a review of clinical applications. Rep. Prac. Oncol. Radiother. 12, 267–275 (2007)

    CrossRef  Google Scholar 

  6. Jordan, A., Scholz, R., Wust, P., Fähling, H., Roland, F.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413–419 (1999)

    CrossRef  Google Scholar 

  7. Rodrigues, R.O., Bañobre-López, M., Gallo, J., Tavares, P.B., Silva, A.M.T., Lima, R., Gomes, H.T.: Haemocompatibility of iron oxide nanoparticles synthesized for theranostic applications: a high-sensitivity microfluidic tool. J. Nanopart. Res. 18, 1–17 (2016)

    CrossRef  Google Scholar 

  8. Aphesteguy, J.C., Kurlyandskaya, G.V., de Celis, J.P., Safronov, A.P., Schegoleva, N.N.: Magnetite nanoparticles prepared by co-precipitation method in different conditions. Mater. Chem. Phys. 161, 243–249 (2015)

    CrossRef  Google Scholar 

  9. Oliveira, M.S.N., Alves, M.A., Pinho, F.T., McKinley, G.H.: Viscous flow through microfabricated hyperbolic contractions. Exp. Fluids 43, 437–451 (2007)

    CrossRef  Google Scholar 

  10. Curtis, E.M., Bahrami, A.H., Weikl, T.R., Hall, C.K.: Modeling nanoparticle wrapping or translocation in bilayer membranes. Nanoscale 7, 14505–14514 (2015)

    CrossRef  Google Scholar 

  11. Sasikala, A.R.K., Thomas, R.G., Unnithan, A.R., Saravanakumar, B., Jeong, Y.Y., Park, C.H., Kim, C.S.: Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Sci. Rep. 6, 20543 (2016)

    CrossRef  Google Scholar 

  12. Li, Z., Ye, E., David, Lakshminarayanan, R., Loh, X.J.: Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery. Small 12, 4782–4806 (2016)

    CrossRef  Google Scholar 

  13. Chen, D., Dougherty, C.A., Zhu, K., Hong, H.: Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Control. Release 210, 230–245 (2015)

    CrossRef  Google Scholar 

  14. Hervault, A., Dunn, A.E., Lim, M., Boyer, C., Mott, D., Maenosono, S., Thanh, N.T.K.: Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8, 12152–12161 (2016)

    CrossRef  Google Scholar 

  15. Liu, J., Luo, Z., Zhang, J., Luo, T., Zhou, J., Zhao, X., Cai, K.: Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials 83, 51–65 (2016)

    CrossRef  Google Scholar 

  16. Mohapatra, S., Rout, S.R., Das, R.K., Nayak, S., Ghosh, S.K.: Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 32, 1611–1620 (2016)

    CrossRef  Google Scholar 

  17. Li, S., Zheng, J., Chen, D., Wu, Y., Zhang, W., Zheng, F., Cao, J., Ma, H., Liu, Y.: Yolk-shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery. Nanoscale 5, 11718–11724 (2013)

    CrossRef  Google Scholar 

  18. Rodrigues, R.O., Baldi, G., Doumett, S., Gallo, J., Bañobre-López, M., Dražić, G., Calhelha, R.C., Ferreira, I.C.F.R., Lima, R., Silva, A.M.T., Gomes, H.T.: A tailor-made protocol to synthesize yolk-shell graphene-based magnetic nanoparticles for nanomedicine. C 4, 55 (2018)

    Google Scholar 

  19. Rodrigues, R.O., Baldi, G., Doumett, S., Garcia-Hevia, L., Gallo, J., Bañobre-López, M., Dražić, G., Calhelha, R.C., Ferreira, I.C.F.R., Lima, R., Gomes, H.T., Silva, A.M.T.: Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater. Sci. Eng., C 93, 206–217 (2018)

    CrossRef  Google Scholar 

  20. Shin, S.R., Zhang, Y.S., Kim, D.-J., Manbohi, A., Avci, H., Silvestri, A., Aleman, J., Hu, N., Kilic, T., Keung, W., Righi, M., Assawes, P., Alhadrami, H.A., Li, R.A., Dokmeci, M.R., Khademhosseini, A.: Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal. Chem. 88, 10019–10027 (2016)

    CrossRef  Google Scholar 

  21. Khademhosseini, A., Langer, R.: Nanobiotechnology: drug delivery and tissue engineering. Chem. Eng. Prog. 102, 38–42 (2006)

    Google Scholar 

Download references

Acknowledgment

The successful accomplishment of the multidisciplinary tasks considered in this Ph.D. work, was supported by important collaborations that were strengthened at different stages in the frame of this Ph.D. project, namely INL - International Iberian Nanotechnology Laboratory (Braga, Portugal); CeRiCol - Centro Ricerche Colorobbia Consulting (Vinci, Italy); CIMO – Centro de Investigação da Montanha (Bragança, Portugal) and Harvard-MIT Division of Health Sciences and Technology (Cambridge, USA).

R.O. Rodrigues acknowledge the Ph.D. scholarship SFRH/BD/97658/2013 granted by Fundação para a Ciência e a Tecnologia (FCT), as well as a Fulbright Research Grant 2017, granted by Fulbright Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel O. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, R.O., Lima, R., Gomes, H.T., Silva, A.M.T. (2020). Magnetic Carbon Nanostructures and Study of Their Transport in Microfluidic Devices for Hyperthermia. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_232

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_232

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)