Advertisement

Automatic Segmentation of Bipolar EHGs’ Contractions Using Wavelet Transform

  • Amer ZaylaaEmail author
  • Ahmad Diab
  • Ziad Fawal
  • Mohamad Khalil
  • Catherine Marque
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 76)

Abstract

Until recently, many segmentation research trials on uterine EMG have been recorded for the sake of not only automatic detection of contractions but also curtailment of other events presents in the electrohysterogram (EHG). In this study, we use an online segmentation method, which has proven its efficiency and known by Dynamic Cumulative Sum (DCS). The method is first applied on real bipolar EHGs signals then on their details obtained by wavelet transform. The detected rupture instants are driven through an enhanced technique of faulty rupture instants elimination, dynamic selection of multichannel bipolar EHG signals and its details after wavelet transform and event tracking algorithm. Therefore, enhanced method sensitivity and “other events” rate of bipolar EHGs with and without wavelet are computed using Margin validation test in order to classify among events as contractions or not referring to contractions identified by expert. Indeed, enhanced technique of event tracking, proposed in this study, seems to be more efficient comparing to previous techniques. Further studies should be achieved for the sake of fully identifying the uterine contractions from other events and then decreasing the “other events” rate.

Keywords

Multichannel uterine EMG signal Dynamic cumulative sum Automatic segmentation Wavelet transform 

Notes

Acknowledgement

This research is supported by Lebanese University and Al Koura Hospital.

References

  1. 1.
    Hug, L., Sharrow, D., Zhong, K., You, D.: Levels & Trends in Child Mortality. United Nations Inter-Agency Group for Child Mortality Estimation (UN IGME). UNICEF, New York (2017)Google Scholar
  2. 2.
    Oza, L.S., Hogan, D., Chu, Y., Perin, J., Zhu, J.: Global, regional, and national causes of under mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388(10063), 3027–3035 (2016)CrossRefGoogle Scholar
  3. 3.
    Miles, A.M., Monga, M., Richeson, K.S.: Correlation of external and internal monitoring of uterine activity in a cohort of term patients. Am. J. Perinatol. 18(3), 137–140 (2001)CrossRefGoogle Scholar
  4. 4.
    Diab, A., Hassan, M., Laforet, J., Alexandersson, A., Karlsson, B., Marque, C.: Analysis of connectivity strength and direction of simulated and 20 real multielectrode EHG signals. Med. Biol. Eng. Comput. (2014)Google Scholar
  5. 5.
    Alamedine, D., Diab, A., Muszynski, C., Karlsson, B., Khalil, M., Marque, C.: Selection algorithm for parameters to characterize uterine EHG signals for the detection of preterm labor. Signal Image Video Process. 1–10, June 2014Google Scholar
  6. 6.
    Eadie, W.T.: Statistical Methods in Experimental Physics. North-Holland, p. 224 (1971)Google Scholar
  7. 7.
    Basseville, M., Benveniste, M.: Sequential segmentation of non-stationary digital signals using spectral analysis. Inf. Sci. 29, 57–73 (1983)CrossRefGoogle Scholar
  8. 8.
    Brandt, A.V.: Detecting and estimating parameters jumps using ladder algorithms and likelihood ratio test. In: Proceedings of ICASSP, Boston, MA, pp. 1017–1020 (1983)Google Scholar
  9. 9.
    Basseville, M., Benveniste, M.: Sequential detection of abrupt changes in spectral characteristics of digital signals. IEEE Trans. Inf. Theory 29(9), 709–724 (1983)CrossRefGoogle Scholar
  10. 10.
    Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  11. 11.
    Khalil, M., Duchêne, J.: Une approche pour la détection fondée sur une somme cumulée dynamique associée à une décomposition multi échelle. Application à l’EMG utérin. Dix-septième Colloque Gretsi sur le traitement du signal et des images, Vannes, France (1999)Google Scholar
  12. 12.
    Zaylaa, A., Diab, A., Khalil, M., Marque, C.: Multichannel EHG segmentation for automatically identifying contractions and motion artifacts. In: 2017 International Conference on Advances in Biomedical Engineering (ICABME) IEEE EMBS, Beirut, Lebanon, 19–21 October 2017Google Scholar
  13. 13.
    Muszynski, C., Happillon, T., Azudin, K., Tylcz, J.B., Istrate, D., Marque, C.: Automated electrohysterographic detection of uterine contractions for monitoring of pregnancy: feasibility and prospects. BMC Pregnancy Childbirth 18, 136 (2018)CrossRefGoogle Scholar
  14. 14.
    Zaylaa, A., Diab, A., Khalil, M., Marque, C.: Automatic segmentation of contractions and other events in monopolar EHGs-monodimensional study. ACIT 2018 IEEE 978-1-7281-0385-3/18 (2018)Google Scholar
  15. 15.
    Sammali, F., Kuijsters, N.P.M., Schoot, B.C., Mischi, M., Rabotti, C.: Feasibility of transabdominal electrohysterography for analysis of uterine activity in nonpregnant women. Sage J. 25(7), 1124–1133 (2018)Google Scholar
  16. 16.
    Karlsson, B., Terrien, J., Gudmundsson, V., Steingrimsdottir, T., Marque, C.: Abdominal EHG on a 4 by 4 grid: mapping and presenting the propagation of uterine contractions. In: 11th Mediterranean Conference on Medical and Biological Engineering and Computing, Ljubljana, Slovenia, pp. 139–143 (2007)CrossRefGoogle Scholar
  17. 17.
    Diab, M.O., Marque, C., Khalil, M.: Une approche de classification des contractions utérines basée sur la théorie des ondelettes et la statistique. Leba. Sci. J. 7(1) (2006)Google Scholar
  18. 18.
    Chendeb, M., Khalil, M., Duchêne, J.: The use of wavelet packets for event detection. In: Proceedings of EUSIPCO, Antalya, Turkey (2005)Google Scholar
  19. 19.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, New York (1988)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Amer Zaylaa
    • 1
    • 4
    Email author
  • Ahmad Diab
    • 2
  • Ziad Fawal
    • 3
  • Mohamad Khalil
    • 4
  • Catherine Marque
    • 1
  1. 1.CNRS UMR 7338, BMBI, Sorbonne Universités, Université de Technologie de Compiègne (UTC)CompiègneFrance
  2. 2.Faculty of Public Health, Doctoral School for Sciences and TechnologyLebanese University (UL)TripoliLebanon
  3. 3.Faculty of SciencesLebanese University (UL)TripoliLebanon
  4. 4.Faculty of Engineering, Doctoral School for Sciences and TechnologyLebanese University (UL)TripoliLebanon

Personalised recommendations