Skip to main content

Assistive Smart Cane (ASCane) for Fall Detection: First Advances

  • Conference paper
  • First Online:
XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

The development of fall detection systems with the capability of real-time monitoring is necessary considering that a large amount of people die and suffer severe consequences from falls. Due to their advantages, daily life accessories can be a solution to embed fall-related systems, and canes are no exception. In this paper, it is presented a cane with fall detection abilities. The ASCane is instrumented with an inertial sensor which data will be tested with three different fixed multi-threshold fall detection algorithms, one dynamic multi-threshold and machine learning methods from the literature. They were tested and modified to account the use of a cane. The best performance resulted in a sensitivity and specificity of 96.90% and 98.98%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Falls - WHO (2018). http://www.who.int/news-room/fact-sheets/detail/falls. Accessed 1 Nov 2018

  2. Burns, E.R., Stevens, J.A., Lee, R.: The direct costs of fatal and non-fatal falls among older adults United States. J. Saf. Res. 58, 99–103 (2016). https://doi.org/10.1016/j.jsr.2016.05.001

    Article  Google Scholar 

  3. Lachtar, A., Val, T., Kachouri, A., Lachtar, A., Val, T., Kachouri, A.: 3DCane: a monitoring system for the elderly using a connected walking stick. Int. J. Comput. Sci. Inf. Secur. 14(8), 1–8 (2017)

    Google Scholar 

  4. Cates, B., Sim, T., Heo, H.M., Kim, B., Kim, H., Mun, J.H.: A novel detection model and its optimal features to classify falls from low- and high-acceleration activities of daily life using an insole sensor system. Sensors (Switzerland) 18(4) (2018). https://doi.org/10.3390/s18041227

    Article  Google Scholar 

  5. Xu, T., Zhou, Y., Zhu, J.: New advances and challenges of fall detection systems: a survey. Appl. Sci. 8(3), 418 (2018). https://doi.org/10.3390/app8030418

    Article  Google Scholar 

  6. Shi, G., Chan, C.S., Li, W.J., Leung, K.S., Zou, Y., Jin, Y.: Mobile human airbag system for fall protection using mems sensors and embedded SVM classifier. IEEE Sens. J. 9(5), 495–503 (2009). https://doi.org/10.1109/JSEN.2008.2012212

    Article  Google Scholar 

  7. Bateni, H., Maki, B.E.: Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch. Phys. Med. Rehabil. 86(1), 134–145 (2005). https://doi.org/10.1016/j.apmr.2004.04.023

    Article  Google Scholar 

  8. Luz, C., Bush, T., Shen, X., Pruchno, R.: Do canes or walkers make any difference? Nonuse and fall injuries. Gerontologist 57(2), 211–218 (2017). https://doi.org/10.1093/geront/gnv096

    Article  Google Scholar 

  9. Bourke, A.K., O’Brien, J.V., Lyons, G.M.: Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 26(2), 194–199 (2007). https://doi.org/10.1016/j.gaitpost.2006.09.012

    Article  Google Scholar 

  10. Bourke, A.K., Lyons, G.M.: A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med. Eng. Phys. 30(1), 84–90 (2008). https://doi.org/10.1016/j.medengphy.2006.12.001

    Article  Google Scholar 

  11. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2), 285–291 (2008). https://doi.org/10.1016/j.gaitpost.2008.01.003

    Article  Google Scholar 

  12. Ashfak Habib, M., Mohktar, M.S., Bahyah Kamaruzzaman, S., Seang Lim, K., Maw Pin, T., Ibrahim, F.: Smartphone-based solutions for fall detection and prevention: challenges and open issues. Sensors (Switzerland) 14(4), 7181–7208 (2014). https://doi.org/10.3390/s140407181

    Article  Google Scholar 

  13. Otanasap, N.: Pre-impact fall detection based on wearable device using dynamic threshold model. In: Proceedings of Parallel and Distributed Computing, Applications and Technologies, PDCAT, pp. 362–365 (2017). https://doi.org/10.1109/PDCAT.2016.083

  14. Yan, Q., Huang, J., Luo, Z.: Human-robot coordination stability for fall detection and prevention using cane robot. In: 2016 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2016 (1) (2017). https://doi.org/10.1109/MHS.2016.7824171

  15. Bouten, C.V., Koekkoek, K.T., Verduin, M., Kodde, R., Janssen, J.D.: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans. Biomed. Eng. 44(3), 136–147 (1997). https://doi.org/10.1109/10.554760

    Article  Google Scholar 

  16. Chen, P.H., Li, Y.H., Chiou, C.W., Lee, C.Y., Lin, J.M.: A smart safety cane for human fall detection. Int. J. Ad Hoc Ubiquitous Comput. 20(1), 49–65 (2015). https://doi.org/10.1504/IJAHUC.2015.071662

    Article  Google Scholar 

  17. Özdemir, A.T.: An analysis on sensor locations of the human body for wearable fall detection devices: principles and practice. Sensors (Switzerland) 16(8) (2016). https://doi.org/10.3390/s16081161

    Article  Google Scholar 

  18. Shibuya, N., Nukala, B.T., Rodriguez, A.I., Tsay, J., Nguyen, T.Q., Zupancic, S., Lie, D.Y.: A real-time fall detection system using a wearable gait analysis sensor and a Support Vector Machine (SVM) classifier. In: 2015 8th International Conference on Mobile Computing and Ubiquitous Networking, ICMU 2015, pp. 66–67 (2015). https://doi.org/10.1109/ICMU.2015.7061032

  19. Liu, S.H., Cheng, W.C.: Fall detection with the support vector machine during scripted and continuous unscripted activities. Sensors (Switzerland) 12(9), 12301–12316 (2012). https://doi.org/10.3390/s120912301

    Article  Google Scholar 

  20. Chen, K.H., Yang, J.J., Jaw, F.S.: Accelerometer-based fall detection using feature extraction and support vector machine algorithms. Instrum. Sci. Technol. 44(4), 333–342 (2016). https://doi.org/10.1080/10739149.2015.1123161

    Article  Google Scholar 

  21. Putra, I.P.E.S., Brusey, J., Gaura, E., Vesilo, R.: An event-triggered machine learning approach for accelerometer-based fall detection. Sensors (Switzerland) 18(1), 1–18 (2018). https://doi.org/10.3390/s18010020

    Article  Google Scholar 

  22. Misiunas, A., Meskauskas, T., Samaitien, R.: Accuracy of different machine learning type methodologies for EEG classification by diagnosis, pp. 441–448 (2019). https://doi.org/10.1007/978-3-030-10692-8_50

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is supported by the FCT - Fundação para a Ciência e Tecnologia - with the scholarship reference PD/BD/141515/2018, with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalização (POCI) - with the reference project POCI-01-0145-FEDER-006941.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Mouta .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mouta, P., Ribeiro, N.F., Santos, C.P., Moreira, R. (2020). Assistive Smart Cane (ASCane) for Fall Detection: First Advances. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_204

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_204

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics