Advertisement

Automatic Lung Reference Model

  • Marlene Machado
  • Carlos A. Ferreira
  • João Pedrosa
  • Eduardo Negrão
  • João Rebelo
  • Patrícia Leitão
  • André S. Carvalho
  • Márcio C. Rodrigues
  • Isabel Ramos
  • António Cunha
  • Aurélio CampilhoEmail author
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 76)

Abstract

The lung cancer diagnosis is based on the search of lung nodules. Besides its characterization, it is also common to register the anatomical position of these findings. Even though computed-aided diagnosis systems tend to help in these tasks, there is still lacking a complete system that can qualitatively label the nodules in lung regions. In this way, this paper proposes an automatic lung reference model to facilitate the report of nodules between computed-aided diagnosis systems and the radiologist, and among radiologists. The model was applied to 115 computed tomography scans with manually and automatically segmented lobes, and the obtained sectors’ variability was evaluated. As the sectors average variability within lobes is less or equal to 0.14, the model can be a good way to promote the report of lung nodules.

Keywords

Lung reference model Lung division Nodule localization 

Notes

Acknowledgments

This study is associated with LNDetector, which is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness - COMPETE 2020 Programme and by the National Fundus through the Portuguese funding agency, FCT - Fundação para a Ciência e Tecnologia within project POCI-01-0145-FEDER-016673.

References

  1. 1.
    Busayarat, S., Zrimec, T.: Detection of bronchopulmonary segments on high-resolution CT–preliminary results. In: Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS 2007), pp. 199–204. IEEE (2007)Google Scholar
  2. 2.
    Ferreira, F.T., Sousa, P., Galdran, A., Sousa, M.R., Campilho, A.: End-to-end supervised lung lobe segmentation. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)Google Scholar
  3. 3.
    Machado, M., Aresta, G., Leitão, P., Carvalho, A.S., Rodrigues, M., Ramos, I., Cunha, A., Campilho, A.: Radiologists’ gaze characterization during lung nodule search in thoracic CT. In: 2018 International Conference on Graphics and Interaction (ICGI), pp. 1–7. IEEE (2018)Google Scholar
  4. 4.
    Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)CrossRefGoogle Scholar
  5. 5.
    Novo, J., Rouco, J., Mendonça, A., Campilho, A.: Reliable lung segmentation methodology by including juxtapleural nodules. In: International Conference Image Analysis and Recognition, pp. 227–235. Springer (2014)Google Scholar
  6. 6.
    Rudyanto, R.D., Kerkstra, S., Van Rikxoort, E.M., Fetita, C., Brillet, P.Y., Lefevre, C., Xue, W., Zhu, X., Liang, J., Öksüz, İ., et al.: Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the vessel12 study. Med. Image Anal. 18(7), 1217–1232 (2014)CrossRefGoogle Scholar
  7. 7.
    Shields, T.W., LoCicero, J., Reed, C.E., Feins, H.R.: General Thoracic Surgery, 7th edn. Lippincott Williams & Wilkins, Philadelphia (2009)Google Scholar
  8. 8.
    Stoecker, C., Welter, S., Moltz, J.H., Lassen, B., Kuhnigk, J.M., Krass, S., Peitgen, H.O.: Determination of lung segments in computed tomography images using the Euclidean distance to the pulmonary artery. Med. Phys. 40(9), 1–10 (2013) CrossRefGoogle Scholar
  9. 9.
    Van Rikxoort, E.M., de Hoop, B., van de Vorst, S., Prokop, M., van Ginneken, B.: Automatic segmentation of pulmonary segments from volumetric chest CT scans. IEEE Trans. Med. Imaging 28(4), 621–630 (2009)CrossRefGoogle Scholar
  10. 10.
    Van Rikxoort, E.M., Prokop, M., de Hoop, B., Viergever, M.A., Pluim, J.P., van Ginneken, B.: Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE Trans. Med. Imaging 29(6), 1286–1296 (2010)CrossRefGoogle Scholar
  11. 11.
    Van Rikxoort, E.M., Van Ginneken, B.: Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Phys. Med. Biol. 58(17), R187 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marlene Machado
    • 1
  • Carlos A. Ferreira
    • 2
  • João Pedrosa
    • 2
  • Eduardo Negrão
    • 3
  • João Rebelo
    • 3
  • Patrícia Leitão
    • 3
  • André S. Carvalho
    • 3
  • Márcio C. Rodrigues
    • 3
  • Isabel Ramos
    • 3
  • António Cunha
    • 2
    • 4
  • Aurélio Campilho
    • 2
    • 5
    Email author
  1. 1.SigninumBragaPortugal
  2. 2.INESC-TEC - Institute for Systems and Computer Engineering, Technology and SciencePortoPortugal
  3. 3.Department of RadiologyPortoPortugal
  4. 4.University of Trás-os-Montes e Alto DouroVila RealPortugal
  5. 5.Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations