Abstract
Due to the constant use of smartphones in daily life, mHealth apps might bear great potential for the use in health care support. In this chapter the potentials, limitations, current quality and future directions of mHealth apps will be discussed. First, we describe potential benefits like quicker facilitation of information, patient empowerment and inclusion of undersupplied population groups. Furthermore, the use of mHealth apps for diverse somatic and mental health conditions will be discussed. Beyond, the chapter provides the reader with a short overview on the efficacy of mHealth apps for different indications: Exemplary, we provide evidence for the efficacy of mHealth apps in the realm of asthmatic disease, depression and anxiety disorder. Despite the availability of mHealth solutions, the acceptance of among health care providers is still moderate to low. This represents a substantial problem, as health care providers are important gate keepers for intervention uptake. In this context we describe methods to foster acceptance. Furthermore, we address potential risks of mHealth app use including low responsiveness towards critical situations (e.g. self-harm) or the difficulty for users to assess the quality of the app’s content. Here we refer to standardized instruments to assess app quality. With respect to the massive amount of sensitive data already being collected through such mHealth apps, we also reflect on the latest current legal situation in Europe and the United States.
This is a preview of subscription content, access via your institution.
Buying options
References
Albrecht U-V (2016) Chancen und Risiken von Gesundheits-Apps (CHARISMHA). Universitätsbibliothek der Technischen Universität Braunschweig
American Psychiatric Association (2019) App evaluation model. https://www.psychiatry.org/psychiatrists/practice/mental-health-apps/app-evaluation-model. Accessed 02 Aug 2019
Bakker D, Kazantzis N, Rickwood D, Rickard N (2016) Mental health smartphone apps: review and evidence-based recommendations for future developments. JMIR Ment Health 3(1):e7. https://doi.org/10.2196/mental.4984
Baumeister H, Nowoczin L, Lin J et al (2014) Impact of an acceptance facilitating intervention on diabetes patients’ acceptance of internet-based interventions for depression: a randomized controlled trial. Diabetes Res Clin Pract 105(1):30–39. https://doi.org/10.1016/j.diabres.2014.04.031
Baumeister H, Seifferth H, Lin J et al (2015) Impact of an acceptance facilitating intervention on patients’ acceptance of internet-based pain interventions: a randomized controlled trial. Clin J Pain 31(6):528–535. https://doi.org/10.1097/AJP.0000000000000118
Baumeister H, Lin J, Ebert DD (2017) Internet- und mobilebasierte Ansätze: Psychosoziale Diagnostik und Behandlung in der medizinischen Rehabilitation. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 60(4):436–444. https://doi.org/10.1007/s00103-017-2518-9
Baumeister H, Pryss R, Baumel A, Messner E-M (2019) Persuasive e-health design for behavior change. In: Montag C, Baumeister H (eds) Mobile sensing and digital phenotyping: new developments in psychoinformatics. Springer, Berlin
Baumel A, Faber K, Mathur N et al (2017) Enlight: a comprehensive quality and therapeutic potential evaluation tool for mobile and web-based eHealth interventions. J Med Internet Res 19(3):e82. https://doi.org/10.2196/jmir.7270
Bendig E, Bauereiß N, Ebert DD et al (2018) Internet-based interventions in chronic somatic disease. Dtsch Arztebl Int 115(40). https://doi.org/10.3238/arztebl.2018.0659
Beratarrechea A, Lee AG, Willner JM et al (2014) The impact of mobile health interventions on chronic disease outcomes in developing countries: a systematic review. Telemed J E Health 20(1):75–82. https://doi.org/10.1089/tmj.2012.0328
Bickmore T, Gruber A, Picard R (2005) Establishing the computer–patient working alliance in automated health behavior change interventions. Patient Educ Couns 59(1):21–30. https://doi.org/10.1016/j.pec.2004.09.008
BinDhim NF, Shaman AM, Trevena L et al (2015) Depression screening via a smartphone app: cross-country user characteristics and feasibility. J Am Med Inform Assoc 22(1):29–34. https://doi.org/10.1136/amiajnl-2014-002840
Bloomfield GS, Vedanthan R, Vasudevan L et al (2014) Mobile health for non-communicable diseases in sub-saharan africa: a systematic review of the literature and strategic framework for research. Glob Health 10(1):1–9. https://doi.org/10.1186/1744-8603-10-49
Dennison L, Morrison L, Conway G, Yardley L (2013) Opportunities and challenges for smartphone applications in supporting health behavior change: qualitative study. J Med Internet Res 15(4):e86. https://doi.org/10.2196/jmir.2583
Devi BR, Syed-Abdul S, Kumar A et al (2015) mHealth: an updated systematic review with a focus on HIV/AIDS and tuberculosis long term management using mobile phones. Comput Methods Programs Biomed 122(2):257–265. https://doi.org/10.1016/j.cmpb.2015.08.003
Domhardt M, Steubl L, Baumeister H (2018) Internet- and mobile-based interventions for mental and somatic conditions in children and adolescents: a systematic review of meta-analyses. Z Kinder Jugendpsychiatr Psychother: 1–14. https://doi.org/10.1024/1422-4917/a000625
Domhardt M, Geßlein H, von Rezori RE, Baumeister H (2019) Internet- and mobile-based interventions for anxiety disorders: a meta-analytic review of intervention components. Depress Anxiety 36(3):213–224. https://doi.org/10.1002/da.22860
Donner J (2008) Research approaches to mobile use in the developing world: a review of the literature. Inf Soc 24(3):140–159. https://doi.org/10.1080/01972240802019970
East ML, Havard BC (2015) Mental health mobile apps: from infusion to diffusion in the mental health social system. JMIR Ment Health 2(1):e10. https://doi.org/10.2196/mental.3954
Ebert DD, Berking M, Cuijpers P et al (2015) Increasing the acceptance of internet-based mental health interventions in primary care patients with depressive symptoms. A randomized controlled trial. J Affect Disord 176:9–17. https://doi.org/10.1016/j.jad.2015.01.056
Ebert DD, Cuijpers P, Muñoz RF, Baumeister H (2017) Prevention of mental health disorders using internet- and mobile-based interventions: a narrative review and recommendations for future research. Front Psychiatry 8:116. https://doi.org/10.3389/fpsyt.2017.00116
Ebert DD, Van Daele T, Nordgreen T et al (2018) Internet- and mobile-based psychological interventions: applications, efficacy, and potential for improving mental health. Eur Psychol 23(2):167–187. https://doi.org/10.1027/1016-9040/a000318
Firth J, Torous J, Nicholas J et al (2017a) The efficacy of smartphone-based mental health interventions for depressive symptoms: a meta-analysis of randomized controlled trials. World Psychiatry 16(3):287–298. https://doi.org/10.1002/wps.20472
Firth J, Torous J, Nicholas J et al (2017b) Can smartphone mental health interventions reduce symptoms of anxiety? A meta-analysis of randomized controlled trials. J Affect Disord 218:15–22. https://doi.org/10.1016/j.jad.2017.04.046
Gagnon M-P, Ngangue P, Payne-Gagnon J, Desmartis M (2016) m-Health adoption by healthcare professionals: a systematic review. J Am Med Inform Assoc 23(1):212–220. https://doi.org/10.1093/jamia/ocv052
Gurman TA, Rubin SE, Roess AA (2012) Effectiveness of mHealth behavior change communication interventions in developing countries: a systematic review of the literature. J Health Commun 17(sup1):82–104. https://doi.org/10.1080/10810730.2011.649160
Hamine S, Gerth-Guyette E, Faulx D et al (2015) Impact of mHealth chronic disease management on treatment adherence and patient outcomes: a systematic review. J Med Internet Res 17(2):e52. https://doi.org/10.2196/jmir.3951
Hennemann S, Rudolph FM, Waldeck E et al (2016) Online-Gesundheitsprogramme in der stationären Rehabilitation: Akzeptanz und Bedarf bei Mitarbeitern und Rehabilitanden. In: Deutsche Rentenversicherung Bund (ed) 25. Rehabilitationswissenschaftliches Kolloquium, 109th edn. Deutsche Rentenversicherung Bund, Berlin, pp 141–143
International Organisation for Standardization (2016) IEC 82304-1: Health software—part 1 general requirements for product safety. https://www.iso.org/standard/59543.html. Accessed 02 Aug 2019
Kargl F, Van der Heijden RW, Erb B, Bösch C (2019) Privacy in mobile sensing. In: Montag C, Baumeister H (eds) Mobile sensing and digital phenotyping: new developments in psychoinformatics. Springer, Berlin
Klein DN, Schwartz JE, Santiago NJ et al (2003) Therapeutic alliance in depression treatment: controlling for prior change and patient characteristics. J Consult Clin Psychol 71(6):997–1006. https://doi.org/10.1037/0022-006X.71.6.997
Krebs P, Duncan DT (2015) Health app use among US mobile phone owners: a national survey. JMIR mHealth uHealth 3(4):e101. https://doi.org/10.2196/mhealth.4924
Kubiak T, Smyth JM (2019) Connecting domains—ecological momentary assessment in a mobile sensing framework. In: Montag C, Baumeister H (eds) Mobile sensing and digital phenotyping: new developments in psychoinformatics. Springer, Berlin
Lin J, Faust B, Ebert DD et al (2018) A web-based acceptance-facilitating intervention for identifying patients’ acceptance, uptake, and adherence of internet- and mobile-based pain interventions: randomized controlled trial. J Med Internet Res 20(8):e244. https://doi.org/10.2196/jmir.9925
Liu L, Miguel Cruz A, Rios Rincon A et al (2014) What factors determine therapists’ acceptance of new technologies for rehabilitation—a study using the unified theory of acceptance and use of technology (UTAUT). Disabil Rehabil 37(5):447–455. https://doi.org/10.3109/09638288.2014.923529
Marcolino MS, Oliveira JAQ, D’Agostino M et al (2018) The impact of mHealth interventions: systematic review of systematic reviews. JMIR mHealth uHealth 6(1):e23. https://doi.org/10.2196/mhealth.8873
Messner E-M, Terhorst Y, Baumeister H (in prep.) When the fear kicks in. A systematic review and evaluation of apps that tackle anxiety. J Anxiety Disord
Montag C, Błaszkiewicz K, Sariyska R et al (2015) Smartphone usage in the 21st century: who is active on WhatsApp? BMC Res Notes 8(1):331. https://doi.org/10.1186/s13104-015-1280-z
Nasi G, Cucciniello M, Guerrazzi C (2015) The role of mobile technologies in health care processes: the case of cancer supportive care. J Med Internet Res 17(2):e26. https://doi.org/10.2196/jmir.3757
Neary M, Schueller SM (2018) State of the field of mental health apps. Cogn Behav Pract 25(4):531–537. https://doi.org/10.1016/j.cbpra.2018.01.002
Paganini S, Teigelkötter W, Buntrock C, Baumeister H (2018) Economic evaluations of internet- and mobile-based interventions for the treatment and prevention of depression: a systematic review. J Affect Disord 225:733–755. https://doi.org/10.1016/j.jad.2017.07.018
Papageorgiou A, Strigkos M, Politou E et al (2018) Security and privacy analysis of mobile health applications: the alarming state of practice. IEEE Access 6:9390–9403. https://doi.org/10.1109/ACCESS.2018.2799522
Phillips CJ, Marshall AP, Chaves NJ et al (2015) Experiences of using the theoretical domains framework across diverse clinical environments: a qualitative study. J Multidiscip Healthc 8:139–146. https://doi.org/10.2147/JMDH.S78458
Powell AC, Landman AB, Bates DW (2014) In search of a few good apps. JAMA 311(18):1851–1852. https://doi.org/10.1001/jama.2014.2564
Proudfoot J, Parker G, Hadzi Pavlovic D et al (2010) Community attitudes to the appropriation of mobile phones for monitoring and managing depression, anxiety, and stress. J Med Internet Res 12(5):e64. https://doi.org/10.2196/jmir.1475
Rabbi M, Klasnja P, Choudhury T et al (2019) Optimizing mHealth interventions with a bandit. In: Montag C, Baumeister H (eds) Mobile sensing and digital phenotyping: new developments in psychoinformatics. Springer, Berlin
Rathner E-M, Djamali J, Terhorst Y et al (2018a) How did you like 2017? Detection of language markers of depression and narcissism in personal narratives. In: Proceedings Interspeech 2018. ISCA, pp 3388–3392
Rathner E-M, Terhorst Y, Cummins N et al (2018b) State of mind: classification through self-reported affect and word use in speech. In: Proceedings Interspeech 2018. ISCA, pp 267–271
Research2guidance (2016) mHealth App Developer Economics 2016
Sariyska R, Rathner E-M, Baumeister H, Montag C (2018) Feasibility of linking molecular genetic markers to real-world social network size tracked on smartphones. Front Neurosci 12:945. https://doi.org/10.3389/fnins.2018.00945
Schueller SM, Neary M, O’Loughlin K, Adkins EC (2018) Discovery of and interest in health apps among those with mental health needs: survey and focus group study. J Med Internet Res 20(6):e10141. https://doi.org/10.2196/10141
Singh K, Drouin K, Newmark LP et al (2016) Many mobile health apps target high-need, high-cost populations, but gaps remain. Health Aff 35(12):2310–2318. https://doi.org/10.1377/hlthaff.2016.0578
Statista (2019) Number of mHealth apps available in the Apple App Store from 1st quarter 2015 to 2nd quarter 2019 [Graph]. In Statista. https://www.statista.com/statistics/779910/health-apps-available-ios-worldwide/. Accessed 12 Aug 2019
Stoyanov SR, Hides L, Kavanagh DJ et al (2015) Mobile app rating scale: a new tool for assessing the quality of health mobile apps. JMIR mHealth uHealth 3(1):e27. https://doi.org/10.2196/mhealth.3422
Surmann M, Bock EM, Krey E et al (2017) Einstellungen gegenüber eHealth-Angeboten in Psychiatrie und Psychotherapie: Eine Pilotumfrage auf dem DGPPN-Kongress 2014. Nervenarzt 88(9):1036–1043. https://doi.org/10.1007/s00115-016-0208-8
Terhorst Y, Rathner E-M, Baumeister H, Sander L (2018) “Hilfe aus dem App-Store?”: Eine systematische Übersichtsarbeit und Evaluation von Apps zur Anwendung bei Depressionen. Verhaltenstherapie 28(2):101–112. https://doi.org/10.1159/000481692
Torous J, Friedman R, Keshavan M (2014) Smartphone ownership and interest in mobile applications to monitor symptoms of mental health conditions. JMIR mHealth uHealth 2(1):e2. https://doi.org/10.2196/mhealth.2994
Torous JB, Chan SR, Yellowlees PM, Boland R (2016) To use or not? Evaluating ASPECTS of smartphone apps and mobile technology for clinical care in psychiatry. J Clin Psychiatry 77(6):e734–e738. https://doi.org/10.4088/JCP.15com10619
Webb TL, Joseph J, Yardley L, Michie S (2010) Using the internet to promote health behavior change: a systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. J Med Internet Res 12(1):e4. https://doi.org/10.2196/jmir.1376
Zanaboni P, Ngangue P, Mbemba GIC et al (2018) Methods to evaluate the effects of internet-based digital health interventions for citizens: systematic review of reviews. J Med Internet Res 20(6):e10202. https://doi.org/10.2196/10202
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Messner, EM., Probst, T., O’Rourke, T., Stoyanov, S., Baumeister, H. (2019). mHealth Applications: Potentials, Limitations, Current Quality and Future Directions. In: Baumeister, H., Montag, C. (eds) Digital Phenotyping and Mobile Sensing. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-31620-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-31620-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31619-8
Online ISBN: 978-3-030-31620-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)