Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 188 Accesses

Abstract

The SNO+ experiment will retrofit the SNO detector [1] by replacing its heavy water target with a liquid scintillator one. The SNO detector has several features that are ideal for new investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A more complete description of the SNO DAQ may be found in [1]. The SNO+ upgrades are described in [7].

  2. 2.

    the description of Cherenkov radiation roughly follows the one given in [17].

  3. 3.

    Molecular sizes are 2–3 orders of magnitude larger than the wavelength of optical light and so dipoles of varying orientation average to zero.

References

  1. Boger J et al (2000) The Sudbury neutrino observatory 449:172–207

    Google Scholar 

  2. Beltran B et al (2013) Measurement of the cosmic ray and neutrino-induced muon flux at the sudbury neutrino observatory 01:1–17. arXiv:0902.2776v1

  3. Eguchi K et al (2003) First results from KamLAND : evidence for reactor antineutrino disappearance (January):1–6. https://doi.org/10.1103/PhysRevLett.90.021802

  4. Fukuda S et al (2003) The Super-Kamiokande detector. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 501(2):418–462. https://doi.org/10.1016/S0168-9002(03)00425-X, http://www.sciencedirect.com/science/article/pii/S016890020300425X

  5. Alimonti G et al (2008) The Borexino detector at the Laboratori Nazionali del Gran Sasso (June). arXiv:0806.2400v1

  6. Alimonti G et al (2009) Nuclear instruments and methods in physics research a the liquid handling systems for the Borexino solar neutrino detector 609:58–78. https://doi.org/10.1016/j.nima.2009.07.028

  7. Andringa S et al (2016) Current status and future prospects of the SNO + Experiment. arXiv:1508.05759v3 [physics.ins-det]. Accessed 28 Jan 2016

  8. Caden E (2017) Private communication

    Google Scholar 

  9. Lay MD, Lyon MJ (1996) An experimental and Monte Carlo investigation of the R1408 Hamamatsu 8-inch photomultiplier tube and associated concentrator to be used in the Sudbury Neutrino Observatory. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 383(23):495–505. https://doi.org/10.1016/S0168-9002(96)00861-3, http://www.sciencedirect.com/science/article/pii/S0168900296008613

  10. Biller SD et al (1999) Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 432(2):364–373. https://doi.org/10.1016/S0168-9002(99)00500-8, http://www.sciencedirect.com/science/article/pii/S0168900299005008

  11. Heintzelman W, Private communication, Private communication

    Google Scholar 

  12. Wan Chan Tseung à H, Kaspar J, Tolich N (2011) Nuclear instruments and methods in physics research a measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy. Nucl Inst Methods Phys Res A 654(1):318–323. https://doi.org/10.1016/j.nima.2011.06.095, http://dx.doi.org/10.1016/j.nima.2011.06.095

  13. Chen MC (2011) Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO + experiment 00:1–5. arXiv:1102.0797v1

  14. Ford RJ (2015) A scintillator purification plant and fluid handling system for SNO+. In: American institute of physics conference series. American Institute of Physics Conference Series, vol 1672, p 080003. https://doi.org/10.1063/1.4927998, arXiv:1506.08746

  15. Caleb Miller (2016) Analysis of cosmogenic impurities in tellurium and development of tellurium loading for the SNO+ experiment

    Google Scholar 

  16. Wright A (2017) Te Dev R&D Pre-summary, SNO+-docDB 4545-v1

    Google Scholar 

  17. Jelley JV (1961) Cerenkov radiation: its origin, properties and applications. Contemp Phys 3(1). https://doi.org/10.1080/00107516108204445

  18. Mastbaum A, Barros N, Coulter I, Kaptanoglu T, Segui L. Optics overview and proposed changes to RAT, SNO+-docDB 3461

    Google Scholar 

  19. Segui L. Scintillator model: comparison between new data and old model, SNO+-docDB 2774

    Google Scholar 

  20. Dai X. Te-diol tests at Queen’s, SNO+-docDB 3315

    Google Scholar 

  21. Segui L. Te-diol studies: stability and optics, SNO+-docDB 3880

    Google Scholar 

  22. Liu Y. Attenuation and scattering of TeBD & the cocktail, SNO+-docDB 3880

    Google Scholar 

  23. Suekane F et al (2004) An overview of the KamLAND 1-kiloton liquid scintillator. ArXiv Physics e-prints, arXiv:physics/0404071

  24. Stainforth R. Characterising the optical response of the SNO+ detector. PhD thesis

    Google Scholar 

  25. Alves R et al (2015) (SNO+), The calibration system for the photomultiplier array of the SNO+ experiment. JINST 10(03):P03002. https://doi.org/10.1088/1748-0221/10/03/P03002, arXiv:1411.4830

  26. Gagnon N, Jones C, Lidgard J, Majumdar K, Reichold A, Segui L, Clark K, Coulter I. The SMELLIE hardware manual, SNO+-docDB 3511-v2

    Google Scholar 

  27. Majumdar K. On the measurement of optical scattering and studies of background rejection in the SNO+ detector. PhD thesis

    Google Scholar 

  28. Peeters S. Source and interface list, SNO+-docDB 1308-v9

    Google Scholar 

  29. Ponkratenko OA, Tretyak VI, Zdesenko YuG (2000) The Event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei. Phys Atom Nucl 63:1282–1287. https://doi.org/10.1134/1.855784, [Yad. Fiz. 63,1355(2000)], arXiv:nucl-ex/0104018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Dunger .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunger, J. (2019). The SNO+ Experiment. In: Event Classification in Liquid Scintillator Using PMT Hit Patterns. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31616-7_2

Download citation

Publish with us

Policies and ethics