Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 198 Accesses

Abstract

The neutrino was first proposed to save energy conservation in nuclear \(\beta \) decay. By 1914, Chadwick had shown that the \(\beta \) energy spectrum was continuous [1], but \(\beta \) decay was then thought to be a two body process, in which the energy of the \(\beta \) and recoiling nucleus are exactly constrained by energy conservation. What followed was many years of controversy, as people questioned the apparently impossible experimental results [1] until they were confirmed by Ellis and Wooster in 1927 [2] and Meitner proved that the missing energy could not be accounted for by neutral \(\gamma \) rays [2]. These results famously led N. Bohr to suggest that perhaps energy conservation applied only in a ‘statistical sense’ [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 SNU (solar neutrino unit) is equal to the flux that produces \(10^{-36}\) captures per second per target atom.

  2. 2.

    The smallest angle made with a vector normal to the surface of the earth.

  3. 3.

    Compared with D\(_2\)O, salt has a much larger neutron capture cross-section and produces a larger \(\gamma \) energy deposit. Both factors enhance the neutron detection efficiency.

  4. 4.

    If the oscillation length was shorter than the length of the detector, the oscillations would ‘average out’ to produce 1/3 of each flavour.

  5. 5.

    Though the octant of \(\theta _{23}\) is still poorly constrained.

  6. 6.

    As the universe expands, neutrinos collide with other particles ever less frequently. Eventually, interactions betweeen the neutrinos and the rest of the universe’s particles are too infrequent to maintain thermal equilibrium between the two and the neutrinos are thermally isolated. This is ‘freeze-out’.

  7. 7.

    An introduction to Lorentz group representations and spin 1/2 fields is given in [103].

  8. 8.

    Where \(\mathcal {C} = i\gamma ^{2}\gamma ^{0}\).

  9. 9.

    References [2, 105] serve as a good introductions for the following two sections.

  10. 10.

    The largest mass currently allowed by cosmology.

  11. 11.

    Fermion fields carry dimension \([E]^{\frac{3}{2}}\), so the Majorana mass term carries dimension \([E]^{3}\) whilst boson fields carry dimension [E]. Two Higgs fields in the interaction term would give it dimension 5, Lagrangian terms of dimension greater than 4 are non-renormalisable.

  12. 12.

    This is just the same helicity suppression that causes \(\pi ^\pm \) to decay predominantly to \(\upmu \).

  13. 13.

    This is the ‘pairing’ term of the semi-empirical mass formula for nuclei.

  14. 14.

    Neglecting the neutrino mass.

  15. 15.

    The exception is the \(\alpha \) emitter \(^{238}\)U for which the half-life was measured radio-chemically [116].

  16. 16.

    Part of which is not ruled out by cosmology.

  17. 17.

    Ignoring the neutrino mass.

  18. 18.

    Assuming G\(^{0\nu } = 3.96\times 10^{-14}\), M\(^{0\nu } = 4.03\).

  19. 19.

    In the limit that the number of background counts is Gaussian.

References

  1. Jensen C, Aaserud F (2000) Controversy and consensus: nuclear beta decay 1911–1934

    Google Scholar 

  2. Giunti C, Kim CW (2007) Fundamentals of neutrino physics and astrophysics

    Google Scholar 

  3. Brown LM (1978) The idea of the neutrino. Phys Today 31:23–28

    Article  Google Scholar 

  4. Pauli W, Pauli letter collection: letter to Lise Meitner. https://cds.cern.ch/record/83282

  5. Fermi E (1934) Versuch einer Theorie der \(\beta \)-Strahlen. I. Zeitschrift fur Physik 88:161–177. https://doi.org/10.1007/BF01351864

    Article  ADS  MATH  Google Scholar 

  6. Fermi E (1934) Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spettrali, Il Nuovo Cimento (1924-1942) 11(3):157. https://doi.org/10.1007/BF02959829

  7. Reines F, Cowan CL (1956) The neutrino. Nature 178:446 EP. https://doi.org/10.1038/178446a0

  8. Danby G et al (1962) Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos. Phys Rev Lett 9:36–44. https://doi.org/10.1103/PhysRevLett.9.36

    Article  ADS  Google Scholar 

  9. Kodama K et al (2001) (DONUT) Observation of tau neutrino interactions. Phys Lett B 504:218–224. https://doi.org/10.1016/S0370-2693(01)00307-0, hep-ex/0012035

  10. Lesov A (2009) The weak force: from fermi to Feynman. arXiv:0911.0058

  11. Garwin RL, Lederman LM, Weinrich M (1957) Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys Rev (U.S.) Superseded in part by Phys Rev A, Phys Rev B: Solid State, Phys Rev C, and Phys Rev D 105. https://doi.org/10.1103/PhysRev.105.1415

  12. Wu CS et al (1957) Experimental test of parity conservation in beta decay. Phys Rev 105:1413–1415. https://doi.org/10.1103/PhysRev.105.1413

  13. Feynman RP, Gell-Mann M (1958) Theory of the Fermi interaction. Phys Rev 109:193–198. https://doi.org/10.1103/PhysRev.109.193

  14. Sudarshan ECG, Marshak RE (1958) Chirality Invariance and the universal Fermi interaction. Phys Rev 109:1860–1862. https://doi.org/10.1103/PhysRev.109.1860.2

  15. Sakurai JJ (1958) Mass reversal and weak interactions. Il Nuovo Cimento (1955–1965) 7(5):649–660. https://doi.org/10.1007/BF02781569

  16. Goldhaber M, Grodzins L, Sunyar AW (1958) Helicity of neutrinos. Phys Rev 109:1015–1017. https://doi.org/10.1103/PhysRev.109.1015

  17. Atkinson RdE, Houtermans FG (1929) Zur Frage der Aufbaumöglichkeit der Elemente in Sternen. Zeitschrift für Physik 54(9):656–665. https://doi.org/10.1007/BF01341595

  18. Bethe HA (1939) Energy production in stars. Phys Rev 55:434–456. https://doi.org/10.1103/PhysRev.55.434

  19. Margaret Burbidge E, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29:547–650. https://doi.org/10.1103/RevModPhys.29.547

  20. Giunti C (2010) No effect of majorana phases in neutrino oscillations (January), pp. 1–6. arXiv:1001.0760v2

  21. Berry C (2015) Blog entry December 2015. https://cplberry.com/2015/12/

  22. Raymond D (1964) Solar neutrinos. II. Experimental. Phys Rev Lett 12:303–305. https://doi.org/10.1103/PhysRevLett.12.303

  23. Bahcall John N (1964) Solar neutrinos. I. Theoretical. Phys Rev Lett 12:300–302. https://doi.org/10.1103/PhysRevLett.12.300

  24. Bahcall JN (1989) Neutrino astrophysics. Cambridge University Press. https://books.google.co.uk/books?id=8GIP7uNMhlsC

  25. Raymond D, Harmer Don S, Hoffman Kenneth C (1968) Search for neutrinos from the Sun. Phys Rev Lett 20:1205–1209. https://doi.org/10.1103/PhysRevLett.20.1205

  26. Bahcall JN (1969) Neutrinos from the Sun. Sci Am 221(1):28–37. http://www.jstor.org/stable/24926407

  27. Bahcall JN, Neutrino energy spectra. http://www.sns.ias.edu/~jnb/SNviewgraphs/SNspectrum/energyspectra.html

  28. Fukuda Y et al (1996) Solar neutrino data covering solar cycle 22. Phys Rev Lett 77:1683–1686. https://doi.org/10.1103/PhysRevLett.77.1683

  29. Hosaka J et al (2006) (Super-Kamiokande Collaboration) Solar neutrino measurements in Super-Kamiokande-I. Phys Rev D 73:112001. https://doi.org/10.1103/PhysRevD.73.112001

  30. Lowe AJ (2009) Neutrino physics and the solar neutrino problem. arXiv:0907.3658

  31. Cribier M et al (1999) Results of the whole GALLEX experiment. Nucl Phys B - Proc Suppl 70(1):284–291. Proceedings of the fifth international workshop on topics in astroparticle and underground physics. https://doi.org/10.1016/S0920-5632(98)00438-1

  32. Abdurashitov JN et al (2002) (SAGE) Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle. J Exp Theor Phys 95:181–193. https://doi.org/10.1134/1.1506424[astro-ph/0204245]

  33. Bahcall JN, Solar neutrino view graphs. http://www.sns.ias.edu/~jnb/SNviewgraphs/snviewgraphs.html

  34. Anchordoqui L, Paul T, Reucroft S, Swain J (2003) Ultrahigh energy cosmic rays. Int J Mod Phys A 18:2229–2366. https://doi.org/10.1142/S0217751X03013879[hep-ph/0206072]

  35. Patrignani C et al (2016) (Particle Data Group) Review of particle physics. Chin Phys C40(10):100001. https://doi.org/10.1088/1674-1137/40/10/100001

  36. Goldhaber M et al (1979) A proposal to test for baryon stability to a lifetime of 10**33-years

    Google Scholar 

  37. Becker-Szendy R et al (1992) Electron- and muon-neutrino content of the atmospheric flux. prd 46:3720–3724. https://doi.org/10.1103/PhysRevD.46.3720

  38. Hirata KS et al (1992) Observation of a small atmospheric v/v\(_{e}\) ratio in Kamiokande. Phys Lett B 280:146–152. https://doi.org/10.1016/0370-2693(92)90788-6

  39. Fukuda S et al (2003) The Super-Kamiokande detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 501(2):418–462. https://doi.org/10.1016/S0168-9002(03)00425-X

  40. Fukuda Y et al (1998) Measurement of a small atmospheric \(\nu _{\mu }\)/\(\nu _e\) ratio. Phys Lett B 433(1):9–18. https://doi.org/10.1016/S0370-2693(98)00476-6

  41. Shiozawa M (1999) Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 433(1):240–246. https://doi.org/10.1016/S0168-9002(99)00359-9

  42. Kajita T, Kearns E, Shiozawa M (2016) Establishing atmospheric neutrino oscillations with Super-Kamiokande. Nucl Phys B 908(Supplement C):14–29. Neutrino oscillations: celebrating the Nobel Prize in Physics (2015). https://doi.org/10.1016/j.nuclphysb.2016.04.017, http://www.sciencedirect.com/science/article/pii/S0550321316300554

  43. Pontecorvo B (1957) Mesonium and anti-mesonium. Sov Phys JETP 6:429. [Zh Eksp Teor Fiz 33:549(1957)]

    Google Scholar 

  44. Ziro M, Masami N, Shoichi S (1962) Remarks on the unified model of elementary particles. Prog Theor Phys 28(5):870–880. https://doi.org/10.1143/PTP.28.870

  45. Pontecorvo B (1968) Neutrino experiments and the problem of conservation of leptonic charge. Sov Phys JETP 26:984–988. [Zh Eksp Teor Fiz 53:1717 (1967)]

    Google Scholar 

  46. Eliezer S, Swift AR (1976) Experimental consequences of electron neutrino-muon-neutrino mixing in neutrino beams. Nucl Phys B 105:45–51. https://doi.org/10.1016/0550-3213(76)90059-6

    Article  ADS  Google Scholar 

  47. Fritzsch H, Minkowski P (1976) Vector-like weak currents, massive neutrinos, and neutrino beam oscillations. Phys Lett 62B:72–76. https://doi.org/10.1016/0370-2693(76)90051-4

    Article  ADS  Google Scholar 

  48. Bilenky SM, Pontecorvo B (1976) Again on neutrino oscillations. Lett Nuovo Cim 17:569. https://doi.org/10.1007/BF02746567

  49. Wolfenstein L (1978) Neutrino oscillations in matter. Phys Rev D 17:2369–2374. https://doi.org/10.1103/PhysRevD.17.2369

  50. Mikheev SP, Smirnov AYu (1985) Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov J Nucl Phys 42:913–917. [Yad Fiz 42:1441 (1985)]

    Google Scholar 

  51. Mikheev SP, Smirnov AY (1986) Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy. Nuovo Cim C 9:17–26. https://doi.org/10.1007/BF02508049

    Article  ADS  Google Scholar 

  52. Bilenky S, Giunti C, Grimus W (1999) Phenomenology of neutrino oscillations. Prog Part Nucl Phys 43:1–86. https://doi.org/10.1016/S0146-6410(99)00092-7, hep-ph/9812360

  53. Smirnov AYu (2005) The MSW effect and matter effects in neutrino oscillations. Phys Scripta T121:57–64. https://doi.org/10.1088/0031-8949/2005/T121/008, hep-ph/0412391

  54. Mikheev SP, Smirnov AYu (1986) Neutrino oscillations in a variable density medium and neutrino bursts due to the gravitational collapse of stars. Sov Phys JETP 64:4–7. arXiv:0706.0454, [Zh Eksp Teor Fiz 91:7 (1986)]

  55. Fukuda Y et al (1998) (Super-Kamiokande) Evidence for oscillation of atmospheric neutrinos. Phys Rev Lett 81:1562–1567. https://doi.org/10.1103/PhysRevLett.81.1562[hep-ex/9807003]

  56. Barger Vernon D et al (1999) Neutrino decay and atmospheric neutrinos. Phys Lett B 462:109–114. https://doi.org/10.1016/S0370-2693(99)00887-4[hep-ph/9907421]

  57. Yuval G, Worah MP (1998) Atmospheric muon-neutrino deficit from decoherence. Phys Lett B [hep-ph/9807511]. Submitted to

    Google Scholar 

  58. Bellerive A et al, The sudbury neutrino observatory, pp 1–25, arXiv:1602.02469v2

  59. Boger J et al (2000) The sudbury neutrino observatory, vol 449, pp 172–207

    Google Scholar 

  60. Amsbaugh John F et al (2007) An array of low-background He-3 proportional counters for the sudbury neutrino observatory. Nucl Instrum Meth A579:1054–1080. https://doi.org/10.1016/j.nima.2007.05.321, arXiv:0705.3665

  61. Ahmad QR et al (2002) (SNO) Direct evidence for neutrino flavor transformation from neutral current interactions in the sudbury neutrino observatory. Phys Rev Lett 89:011301. https://doi.org/10.1103/PhysRevLett.89.011301[nucl-ex/0204008]

  62. Smirnov AYu (2016) Solar neutrinos: oscillations or no-oscillations? arXiv:1609.02386

  63. Araki T et al (2005) (KamLAND) Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys Rev Lett 94:081801. https://doi.org/10.1103/PhysRevLett.94.081801[hep-ex/0406035]

  64. Abe S et al (2008) (KamLAND) Precision measurement of neutrino oscillation parameters with KamLAND. Phys Rev Lett 100:221803. https://doi.org/10.1103/PhysRevLett.100.221803, arXiv:0801.4589

  65. de Salas PF et al (2017) Status of neutrino oscillations 2017. arXiv:1708.01186

  66. Ahn JK et al (2012) (RENO) Observation of reactor electron antineutrino disappearance in the RENO experiment. Phys Rev Lett 108:191802. https://doi.org/10.1103/PhysRevLett.108.191802, arXiv:1204.0626

  67. Ahn JK et al (2010) (RENO) RENO: an experiment for neutrino oscillation parameter \(\theta _{13}\) using reactor neutrinos at Yonggwang. arXiv:1003.1391

  68. Abe Y et al (2014) (Double Chooz) Improved measurements of the neutrino mixing angle \(\theta _{13}\) with the Double Chooz detector. JHEP 10:086. https://doi.org/10.1007/JHEP02(2015)074, https://doi.org/10.1007/JHEP10(2014)086, arXiv:1406.7763

  69. Adamson P et al (2014) (MINOS) Combined analysis of \(\nu _{\mu ^{\prime \prime }}\) disappearance and \(\nu _{\mu } \rightarrow \nu _{e}\) appearance in MINOS using accelerator and atmospheric neutrinos. Phys Rev Lett 112:191801. https://doi.org/10.1103/PhysRevLett.112.191801, arXiv:1403.0867

  70. Abe K et al (2017) (T2K Collaboration) Combined analysis of neutrino and antineutrino oscillations at T2K. Phys Rev Lett 118:151801. https://doi.org/10.1103/PhysRevLett.118.151801

  71. Adamson P et al (2017) (NOvA) Constraints on oscillation parameters from \(\nu _e\) appearance and \(\nu _\mu \) disappearance in NOvA. Phys Rev Lett 118(23):231801. https://doi.org/10.1103/PhysRevLett.118.231801, arXiv:1703.03328

  72. Abe K et al (2013) (Super-Kamiokande) Evidence for the appearance of atmospheric Tau neutrinos in Super-Kamiokande. Phys Rev Lett 110(18):181802. https://doi.org/10.1103/PhysRevLett.110.181802, arXiv:1206.0328

  73. Wendell R et al (2010) (Super-Kamiokande) Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II, and III. Phys Rev D81:092004. https://doi.org/10.1103/PhysRevD.81.092004, arXiv:1002.3471

  74. Aartsen MG et al (2017) (IceCube) Measurement of atmospheric neutrino oscillations at 6–56 GeV with icecube deepcore. arXiv:1707.07081

  75. Abbasi R et al (2012) (IceCube) The design and performance of icecube deepcore. Astropart Phys 35:615–624. https://doi.org/10.1016/j.astropartphys.2012.01.004, arXiv:1109.6096

  76. Adrian-Martinez S et al (2013) (ANTARES) Measurement of the atmospheric \(\nu _\mu \) energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. Eur Phys J C73(10):2606. https://doi.org/10.1140/epjc/s10052-013-2606-4, arXiv:1308.1599

  77. Aharmim B et al (2013) (SNO) Combined analysis of all three phases of solar neutrino data from the sudbury neutrino observatory. Phys Rev C88:025501. https://doi.org/10.1103/PhysRevC.88.025501, arXiv:1109.0763

  78. Abe K et al (2016) (Super-Kamiokande) Solar neutrino measurements in Super-Kamiokande-IV. Phys Rev D94(5):052010. https://doi.org/10.1103/PhysRevD.94.052010, arXiv:1606.07538

  79. Bellini G et al (2012) (Borexino Collaboration) First evidence of \(pep\) solar neutrinos by direct detection in Borexino. Phys Rev Lett 108:051302. https://doi.org/10.1103/PhysRevLett.108.051302

  80. Bellini G et al (2011) (Borexino Collaboration) Precision measurement of the \(^{7}\rm Be\) solar neutrino interaction rate in Borexino. Phys Rev Lett 107:141302. https://doi.org/10.1103/PhysRevLett.107.141302

  81. Bellini G et al (2010) (Borexino Collaboration) Measurement of the solar \(^{8}\rm B\) neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys Rev D 82:033006. https://doi.org/10.1103/PhysRevD.82.033006

  82. Smirnov OYu et al (2016) (Borexino) Measurement of neutrino flux from the primary proton-proton fusion process in the Sun with Borexino detector. Phys Part Nucl 47(6):995–1002. https://doi.org/10.1134/S106377961606023X, arXiv:1507.02432

  83. Patterson RB (2015) Prospects for measurement of the neutrino mass hierarchy. Ann Rev Nucl Part Sci 65:177–192. https://doi.org/10.1146/annurev-nucl-102014-021916, arXiv:1506.07917

  84. Martn-Albo J (DUNE) (2017) Sensitivity of DUNE to long-baseline neutrino oscillation physics. In: 2017 European physical society conference on high energy physics (EPS-HEP 2017) Venice, Italy. https://inspirehep.net/record/1632445/files/arXiv:1710.08964.pdf, arXiv:1710.08964. Accessed 5–12 July 2017

  85. Strait J et al (2016) (DUNE) Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE). arXiv:1601.05823

  86. Kim S-B (2015) (RENO) New results from RENO and prospects with RENO-50. Nucl Part Phys Proc 265-266:93–98. https://doi.org/10.1016/j.nuclphysbps.2015.06.024, arXiv:1412.2199

  87. Fengpeng A et al (2016) (JUNO) Neutrino physics with JUNO. J Phys G43(3):030401. https://doi.org/10.1088/0954-3899/43/3/030401, arXiv:1507.05613

  88. Hongxin W et al (2017) Mass hierarchy sensitivity of medium baseline reactor neutrino experiments with multiple detectors. Nucl Phys B 918:245–256. https://doi.org/10.1016/j.nuclphysb.2017.03.002, arXiv:1602.04442

  89. Liang Z, Yifang W, Jun C, Liangjian W (2009) Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos. Phys Rev D 79:073007. https://doi.org/10.1103/PhysRevD.79.073007

  90. Yu-Feng L, Jun C, Yifang W, Liang Z (2013) Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys Rev D 88:013008. https://doi.org/10.1103/PhysRevD.88.013008

  91. Yokoyama M (2017) (Hyper-Kamiokande Proto) The hyper-Kamiokande experiment. In: Proceedings, prospects in neutrino physics (NuPhys2016), London, UK. arXiv:1705.00306. Accessed 12–14 Dec 2016

  92. Walter W (2013) Neutrino mass hierarchy determination with IceCube-PINGU. Phys Rev D88(1):013013. https://doi.org/10.1103/PhysRevD.88.013013, arXiv:1305.5539

  93. Clark K (2016) PINGU and the neutrino mass hierarchy. Nucl Part Phys Proc 273–275(Supplement C):1870–1875. 37th International conference on high energy physics (ICHEP). https://doi.org/10.1016/j.nuclphysbps.2015.09.302, http://www.sciencedirect.com/science/article/pii/S2405601415007919

  94. Capozzi F, Lisi E, Marrone A (2017) Probing the neutrino mass ordering with KM3NeT-ORCA: Analysis and perspectives. arXiv:1708.03022

  95. JUNO Collaboration/JGU-Mainz, Neutrino mass hierarchy in JUNO. https://next.ific.uv.es/next/experiment/physics.html

  96. Bron S (2015) Hyper-Kamiokande: towards a measurement of CP violation in lepton sector. In: Proceedings, prospects in neutrino physics (NuPhys2015), London, UK. arXiv:1605.00884. Accessed 16–18 Dec 2015

  97. Drexlin G, Hannen V, Mertens S, Weinheimer C (2013) Current direct neutrino mass experiments. Adv High Energy Phys 2013:293986. https://doi.org/10.1155/2013/293986, arXiv:1307.0101

  98. Formaggio JA (2014) Direct neutrino mass measurements after PLANCK. Phys Dark Univ 4(Supplement C):75–80. https://doi.org/10.1016/j.dark.2014.10.004, dARK TAUP2013, http://www.sciencedirect.com/science/article/pii/S2212686414000314

  99. Hamish Robertson RG (2013) (KATRIN) KATRIN: an experiment to determine the neutrino mass from the beta decay of tritium. In: Proceedings, 2013 community summer study on the future of U.S. Particle physics: snowmass on the mississippi (CSS2013), Minneapolis, MN, USA. arXiv:1307.5486. Accessed July 29–Aug 6 2013

  100. Esfahani AA et al (2017) (Project 8) Determining the neutrino mass with cyclotron radiation emission spectroscopyProject 8. J Phys G44(5):054004. https://doi.org/10.1088/1361-6471/aa5b4f, arXiv:1703.02037

  101. Blaum K et al (2013) The electron capture \(^{163^{\prime \prime }}\)Ho experiment ECHo. In: The future of neutrino mass measurements: terrestrial, astrophysical, and cosmological measurements in the next decade (NUMASS2013) Milano, Italy. arXiv:1306.2655, Accessed 4–7 Feb 2013

  102. Couchot F et al (2017) Cosmological constraints on the neutrino mass including systematic uncertainties. Astron Astrophys https://doi.org/10.1051/0004-6361/201730927, arXiv:1703.10829 [Astron Astrophys 606:A104 (2017)]

  103. Coleman S (2011) Notes from Sidney Coleman’s physics 253a: quantum field theory. arXiv:1110.5013

  104. Palash B (2011) Pal, Dirac, Majorana and Weyl Fermions. Am J Phys 79:485–498. https://doi.org/10.1119/1.3549729, arXiv:1006.1718

  105. Thomson M (2013) Modern particle physics. Cambridge University Press, New York. http://www-spires.fnal.gov/spires/find/books/www?cl=QC793.2.T46::2013

  106. Laurent C, Marco D, Mikhail S (2012) Matter and antimatter in the universe. New J Phys 14:095012. https://doi.org/10.1088/1367-2630/14/9/095012, arXiv:1204.4186

  107. Ade PAR et al (Planck) (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13. https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589

  108. Sakharov AD (1967) Violation of CP invariance, c Asymmetry, and baryon asymmetry of the universe. Pisma Zh Eksp Teor Fiz 5:32–35. https://doi.org/10.1070/PU1991v034n05ABEH002497, [Usp Fiz Nauk 161:61 (1991)]

  109. Fukugita M, Yanagida T (1986) Baryogenesis without grand unification. Phys Lett B 174:45–47. https://doi.org/10.1016/0370-2693(86)91126-3

  110. Kuzmin VA, Rubakov VA, Shaposhnikov ME (1985) On anomalous electroweak baryon-number non-conservation in the early universe. Phys Lett B 155(1):36–42. https://doi.org/10.1016/0370-2693(85)91028-7

  111. Petcov ST, The nature of massive neutrinos, vol 1 pp 1–35, arXiv:1303.5819v1

  112. Langacker P, Petcov ST, Steigman G, Toshev S (1987) On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter. Nucl Phys B 282:589–609. https://doi.org/10.1016/0550-3213(87)90699-7

  113. Dell’Oro S, Marcocci S, Viel M, Vissani F (2016) Neutrinoless double beta decay: 2015 review. Adv High Energy Phys 2016:2162659. https://doi.org/10.1155/2016/2162659, arXiv:1601.07512

  114. Goeppert-Mayer M (1935) Double beta-disintegration. Phys Rev 48:512–516. https://doi.org/10.1103/PhysRev.48.512

  115. Tretyak VI, Zdesenko YG (2002) Tables of double beta decay dataan update. At Data Nucl Data Tables 80(1): 83–116

    Google Scholar 

  116. Turkevich AL, Economou T, Cowan GA (1992) Double-beta decay of U 238, vol 67 pp 3211–3214

    Google Scholar 

  117. Elliott SR, Hahn AA, Moe MK (1987) Direct evidence for two-neutrino double-beta decay in \(^{82}\rm Se\). Phys Rev Lett 59:2020–2023. https://doi.org/10.1103/PhysRevLett.59.2020

  118. Alduino C et al (2017) Measurement of the two-neutrino double-beta decay half-life of 130 Te with the CUORE-0 experiment. Eur Phys J C. https://doi.org/10.1140/epjc/s10052-016-4498-6

  119. Furry WH (1939) On transition probabilities in double beta-disintegration. Phys Rev 56:1184–1193. https://doi.org/10.1103/PhysRev.56.1184

  120. Racah G, Nakagawa K (1982) On the symmetry between particles and antiparticles. Soryushiron Kenkyu 65(1):34–41. http://ci.nii.ac.jp/naid/110006468258/en/

  121. Schechter J, Valle JWF (1982) Neutrinoless double-\(\beta \) decay in \(SU(2)\times {}U(1)\) theories. Phys Rev D 25:2951–2954. https://doi.org/10.1103/PhysRevD.25.2951

  122. Takasugi E (1984) Can the neutrinoless double beta decay take place in the case of Dirac neutrinos? Phys Lett B 149(4–5):372–376

    Google Scholar 

  123. Heinrich P, Werner R (2015) Neutrinoless double beta decay. New J Phys 17(11):115010. https://doi.org/10.1088/1367-2630/17/11/115010, arXiv:1507.00170

  124. Engel Jonathan, Menndez Javier (2017) Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review. Rep Prog Phys 80(4):046301. https://doi.org/10.1088/1361-6633/aa5bc5, arXiv:1610.06548

  125. Benato Giovanni (2015) Effective Majorana Mass and Neutrinoless Double Beta Decay. Eur. Phys. J. C75(11):563. https://doi.org/10.1140/epjc/s10052-015-3802-1, 1510.01089

  126. Gando A et al (2016) (KamLAND-Zen) Search for majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen. Phys Rev Lett 117(8):082503. https://doi.org/10.1103/PhysRevLett.117.109903, https://doi.org/10.1103/PhysRevLett.117.082503, [Addendum: Phys Rev Lett 117(10):109903 (2016)]

  127. Tretyak VI, Zdesenko YuG (1995) Tables of double beta decay data. At Data Nucl Data Tables 61(1):43–90. https://doi.org/10.1016/S0092-640X(95)90011-X

  128. Bellini G (2016) The impact of Borexino on the solar and neutrino physics. Nucl Phys B 908(Supplement C):pp 178–198. Neutrino oscillations: celebrating the Nobel Prize in physics 2015. https://doi.org/10.1016/j.nuclphysb.2016.04.011, http://www.sciencedirect.com/science/article/pii/S0550321316300499

  129. Elliott SR, Vogel P (2002) Double beta decay. Ann Rev Nucl Part Sci 52:115–151

    Google Scholar 

  130. Biller SD (2013) Probing Majorana neutrinos in the regime of the normal mass hierarchy. Phys Rev D87(7):071301. https://doi.org/10.1103/PhysRevD.87.071301, arXiv:1306.5654

  131. Barabash AS (2017) Brief review of double beta decay experiments. arXiv:1702.06340

  132. Alduino C et al (CUORE) First results from CUORE: a search for lepton number violation via \(0\nu \beta \beta \) decay of \(^{130}\)Te. arXiv:1710.07988

  133. The GERDA Collaboration, “Background-free search for neutrinoless double-decay of 76Ge with GERDA”, Nature vol. 544 pp. 47 EP – (2017), URL http://dx.doi.org/10.1038/nature21717

  134. Agostini M et al (2018) (GERDA Collaboration) Improved limit on neutrinoless double-\(\beta \) decay of \(^{76}\rm Ge\) from GERDA phase II. Phys Rev Lett 120:132503. https://doi.org/10.1103/PhysRevLett.120.132503

  135. Albert JB et al (2014) (EXO-200) Search for Majorana neutrinos with the first two years of EXO-200 data. Nature 510:229–234. https://doi.org/10.1038/nature13432, arXiv:1402.6956

  136. Arnold R et al (2005) (NEMO) First results of the search of neutrinoless double beta decay with the NEMO 3 detector. Phys Rev Lett 95:182302. https://doi.org/10.1103/PhysRevLett.95.182302[hep-ex/0507083]

  137. NEMO Collaboration et al (1996) Double-decay of116Cd, vol 72 pp 239–247

    Google Scholar 

  138. Bongrand M, Mesure des processus de double desintegration beta du 130 Te dans l’experience NEMO 3 R&D du projet SuperNEMO : etude d’un detecteur BiPo, Ph.D. thesis

    Google Scholar 

  139. Argyriades J et al (2009) Measurement of the double-beta decay half-life of 150Nd and search for neutrinoless decay modes with the NEMO-3 detector, vol 80

    Google Scholar 

  140. Argyriades J et al (2010) Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector. Nucl Phys A 847(3):168–179. https://doi.org/10.1016/j.nuclphysa.2010.07.009, http://www.sciencedirect.com/science/article/pii/S0375947410006238

  141. Arnold R et al (2016) (NEMO-3) Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of \(^{48}\)Ca with the NEMO-3 detector. Phys Rev D93(11):112008. https://doi.org/10.1103/PhysRevD.93.112008, arXiv:1604.01710

  142. Arnold R et al (2010) Probing new physics models of neutrinoless double beta decay with SuperNEMO. Eur Phys J C 70(4):927–943. https://doi.org/10.1140/epjc/s10052-010-1481-5

  143. Andringa S et al (2016) Current status and future prospects of the SNO + experiment. arXiv:1508.05759v3 [physics.ins-det]. Accessed 28 Jan 2016

  144. Wright A (2017) Te Dev R&D pre-summary. SNO+-docDB 4545-v1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Dunger .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunger, J. (2019). Introduction and Theoretical Background. In: Event Classification in Liquid Scintillator Using PMT Hit Patterns. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31616-7_1

Download citation

Publish with us

Policies and ethics