Skip to main content

Taxonomy and Biodiversity of the Genus Chaetomium in Different Habitats

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Since Gustav Kunze described and published genus Chaetomium in Mykologische Hefte (Leipzig) in 1817, the genus attracted an immense interest worldwide. Chaetomium is a diverse genus occurring worldwide; species from this genus are capable of colonizing various biotopes, such as soils, marine, animal dung, hair, textiles, plant tissues, seeds, and other substrates rich in cellulose. Chaetomium species are the largest genus of saprophytic ascomycetes, which belongs to the Chaetomiaceae family. The taxonomy of Chaetomium has been studied by several authors. Since the establishment of the genus, more than 400 species have been described, many of which were synonymized/excluded, and only 273 Chaetomium species were accepted according to Index Fungorum Partnership (IFP 2019). Due to the diversity of species and of inhabiting environments, Chaetomium spp. might conceive diverse biosynthetic gene clusters, which transform into various secondary metabolites (the fungi languages) to adapt to different ecological environments. Until now, more than 200 compounds with a wide range of bioactive effects have been isolated from Chaetomium spp., but compared with its richness of species, more bioactive secondary metabolites might be found in this member of fungi. Therefore, together with its ubiquitous nature, these species have great significant impacts on ecosystems, agriculture, food production, biotechnology, and human and animal health. The goal of this chapter is to represent the biodiversity of genus Chaetomium in a wide range of environmental habitats including deserts, salterns, agricultural, mangrove, living plants and animals, air, decayed wood, stones, and human. It is intended, in this chapter, to report on the accepted Chaetomium species and to propose a provisional key to their identification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott SP, Sigler L, McAleer R, McGough DA, Rinaldi MG, Mizell G. (1995) Fatal cerebral mycoses caused by the ascomycete Chaetomium strumarium. J Clin Microbiol 33:2692–2698.

    Google Scholar 

  • Abdel-Azeem AM (1991) Effect of overgrazing on vegetation, microbes and soil in Ismailia-desert habitat. Biological Diversity Symposium, Madrid-Spain, pp 241–246

    Google Scholar 

  • Abdel-Azeem AM (2003) Ecological and taxonomical studies on ascospore-producing fungi in Egypt. Ph.D Thesis, Faculty of Science, Suez Canal University

    Google Scholar 

  • Abdel-Azeem AM (2009) Operation Wallacea in Egypt. I- A preliminary study on diversity of fungi in the world heritage site of Saint Katherine, Egypt. Assiut Univ J Bot 38(1):29–54

    Google Scholar 

  • Abdel-Azeem AM, Ibrahim ME (2004) Diversity of terrophilous mycobiota of Sinai. Egypt J Biol 6:21–31

    Google Scholar 

  • Abdel-Azeem AM, Salem FM (2012) Biodiversity of laccase producing fungi in Egypt. Mycosphere 3(5):900–920

    Article  Google Scholar 

  • Abdel-Azeem AM, Salem FM (2015) Fungi fimicola Aegyptiaci: I. Recent investigations and conservation in arid South Sinai. Mycosphere 6(2):174–194. https://doi.org/10.5943/mycosphere/6/2/8

    Article  Google Scholar 

  • Abdel-Azeem AM, Zaki SM, Khalil WF, Makhlouf NA, Farghaly LM (2016a) Anti-rheumatoid activity of secondary metabolites produced by endophytic Chaetomium globosum. Front Microbiol 7(1477):1–11

    Google Scholar 

  • Abdel-Azeem AM, Salem FM, Abdel-Azeem MA, Nafady NA, Mohesien MT, Soliman EA (2016b) Biodiversity of the genus Aspergillus in different habitats. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering: aspergillus system properties and applications. Elsevier, Amsterdam, pp 3–40

    Chapter  Google Scholar 

  • Abdel-Azeem AM, Omran MA, Mohamed RA (2018a) Evaluation of the curative probability of bioactive metabolites from endophytic fungi isolated from some medicinal plants against paracetamol-induced liver injury in mice. LAP LAMBERT Academic Publishing. ISBN: 978–613–9-89820-6

    Google Scholar 

  • Abdel-Azeem AM, Blanchette RA, Held BW (2018b) New record of Chaetomium grande Asgari & Zare (Chaetomiaceae) for the Egyptian and African mycobiota. Phytotaxa 343(3):283–288

    Google Scholar 

  • Abdel-Azeem AM, Held BW, Richards JE, Davis SL, Blanchette RA (2019) Assessment of biodegradation in ancient archaeological wood from the middle cemetery at Abydos, Egypt. PLoS One 4(3):e0213753. https://doi.org/10.1371/journal.pone.0213753

    Article  CAS  Google Scholar 

  • Abdel-Hafez S (1981) Halophilic fungi of desert soils in Saudi Arabia. Mycopathologia 75:75e80

    Google Scholar 

  • Abdel-Hafez SI (1982a) Survey of microflora of desert soils in Saudi Arabia. Mycopathologia 80:3–8

    Article  Google Scholar 

  • Abdel-Hafez SI (1982b) Osmophilic fungi of desert soils in Saudi Arabia. Mycopathologia 80:9–14

    Article  Google Scholar 

  • Abdel-Hafez SII, El-Maghraby OMO (1993) Thermophilic and thermotolerant fungi of Wadi-Bir-El-Ain soils. Eastern desert, Egypt. Abhath Al-Yarmouk. Pure Sci Eng 2:55–66

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1989a) Keratinophilic and cycloheximide resistant fungi in soils of Sinai Governorate, Egypt. Cryptogam Mycol 10(3):265–275

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1989b) Some ecological studies of osmophilic and halophilic soil fungi of Sinai Peninsula, Egypt. J Sohag Pure Appl Sci Bull Faculty Sci 5:67–83

    Google Scholar 

  • Abdel-Hafez AII, Mazen MB, Galal AA (1990) Glycophilic and cellulose-decomposing fungi from soils of Sinai Peninsula, Egypt. The Arab Gulf J Sci Res 8(1):153–168

    Google Scholar 

  • Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400

    Article  CAS  Google Scholar 

  • Abdel-Rahim IR, Nafady NA, Bagy MMK, Abd-Alla MH, Abd-Alkader AM (2018) Fungi-induced paint deterioration and air contamination in the Assiut University hospital. Egypt Indoor Built Environ 28(3):384–400

    Article  Google Scholar 

  • Abdel-Sater MA (1990) Studies on the mycoflora of the New Valley area, Western Desert, Egypt. Ph.D. Thesis, Faculty of Science, Assiut University

    Google Scholar 

  • Abdel-Sater MA (2000) Soil fungi of the New Valley area, Western desert, Egypt. Bulletin Faculty of Science, Assiut University 29 (2-D), pp 255–271

    Google Scholar 

  • Abdullah, S. K. and AI-Bader, S. M. 1989. A new thermotolerant species of Chaetomium from Iraqi forest soil. Int. J. Mycol. Lichenol. 4:83–91

    Google Scholar 

  • Abdullah, S. K. & Zora, S. E. (1993). Chaetomium mesopotamicum, a new thermophilic species from Iraqi soil. Cryptogamic Botany 3:387–389

    Google Scholar 

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frat F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI, 2006. Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry 38:3003e3018

    Article  CAS  Google Scholar 

  • Adametz L (1886) Untersuchungen über die niederen Pilze der Ackerkrume. Inaug Diss, 1–78. Leipzig

    Google Scholar 

  • Aggarwal R, Tewari AK, Srivastava KD, Singh DV (2004) Role of antibiosis in the biological control of spot blotch (Cochliobolus sativus) of wheat by Chaetomium globosum. Mycopathologia 157(4):369–377

    Article  CAS  Google Scholar 

  • Aggarwal R, Kharbikar LL, Sharma S, Gupta S, Yadav A (2013) Phylogenetic relationships of Chaetomium isolates based on the internal transcribed spacer region of the rRNA gene cluster. Afr J Biotechnol 12(9):914–920

    CAS  Google Scholar 

  • Ahammed SK, Aggarwal R, Singh DV (2005) Morphological variability in different isolates of Chaetomium globosum. Indian Phytopath 58(1):71–74

    Google Scholar 

  • Ali MI (1977) Studies on the fungal flora of Saudi Arabia. 1-Wadi Hanif. Bull Fac Sci Riyadh Univ 8:7–20

    Google Scholar 

  • Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Rojas TI (2013) Study of airborne fungus spores by viable and non-viable methods in Havana. Cuba Grana 52(4):289–298

    Article  Google Scholar 

  • Al-Sadi AM, Al-Khatri B, Nasehi A, Al-Shihi M, Al-Mahmooli IH, Maharachchikumbura SSN (2017) High fungal diversity and dominance by ascomycota in dam reservoir soils of arid climates. Int J Agric Biol 19(4):682–688

    Article  CAS  Google Scholar 

  • Ames LM (1961) A monograph of the Chaetomiaceae. The United States Army research and development series, pp 125

    Google Scholar 

  • Ames LM (1963) A monograph of the Chaetomiaceae. United States Army Research and Development Series 2, pp 1–65

    Google Scholar 

  • Ames LM (1969) A monograph of the Chaetomiaceae. United States Army Research and Development Service. Cramer Publication, New York

    Google Scholar 

  • Amin EE, Abdalla MH (1980) Survey of soil fungi from the Sudan Gezira. Mycopathologia 71:131–136

    Article  Google Scholar 

  • Anandi V et al (1989) Cerebral phaeohyphomycosis caused by Chaetomium globosum in a renal transplant recipient. J Clin Microbiol 27:2226–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arenz BE, Blanchette RA, Farrell RL (2014) Fungal diversity in Antarctic soils. Pages 35–53. In: Cowan D (ed) In Antarctic terrestrial microbiology: physical and biological properties of Antarctic soils. Springer, Berlin

    Google Scholar 

  • Aru A, Munk-Nielsen L, Federspiel BH (1997) The soil fungus Chaetomium in the human paranasal sinuses. Eur Arch Otorhinolaryngol 254:350–352

    Article  CAS  PubMed  Google Scholar 

  • Asgari B, Zare R (2011) The genus Chaetomium in Iran, a phylogenetic study including six new species. Mycologia 103(4):863–882

    Article  PubMed  Google Scholar 

  • Aue R, Muller E (1967) Vergleichende Untersuchungen an einigen Chaetomium arten. In Ber Schweiz bot Ges 77:187–207

    Google Scholar 

  • Azmi OR, Seppelt RD (1998) The broadscale distribution of microfungi in the Windmill Islands region, continental Antarctica. Polar Biol 19:92–100

    Article  Google Scholar 

  • Bahkali AH, Khiyami MA (1996) Cellulose-decomposing fungi from Saudi Arabian soils. QatarUniv Sci J 16(1):77–80

    CAS  Google Scholar 

  • Balazy S, Wrzosek M, Sosnowska D, Tkaczuk C, Muszewska A (2008) Laboratory trials to infect insects and nematodes by some acaropathogenic Hirsutella strains (Mycota: Clavicipitaceous anamorphs). J Invertebr Pathol 97:103–113

    Article  PubMed  Google Scholar 

  • Barron MA et al (2003) Invasive mycotic infections caused by Chaetomium perlucidum, a new agent of cerebral phaeohyphomycosis. J Clin Microbiol 41:5302–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begerow D, Nilsson H, Unterseher M et al (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Appl Microbiol Biotechnol 87:99–108

    Article  CAS  PubMed  Google Scholar 

  • Berkson BM (1966) Cytomorphological studies of the ascogenous hyphae in four species of Chaetomium. Mycologia 58(1):125–130

    Article  Google Scholar 

  • Besada WH, Yusef HM (1968) On the mycoflora of UAR soil. Proc Egypt Acad Sci 21:103–109

    Google Scholar 

  • Besada WH and Yusef HM (1969): Chaetomium mareoticum sp. nov. Transactions of the British Mycological Society 52:502–504

    Article  Google Scholar 

  • Biswas SK, Aggarwal R, Srivastava KD, Gupta S, Dureja P (2012) Characterization of antifungal metabolites of Chaetomium globosum Kunze and their antagonism against fungal plant pathogens. J Biol Cont 26(1):70–74

    Google Scholar 

  • Blanchette RA, Held BW, Abdel-Azeem AM (2017) New record of Chaetomium iranianum MF787598 (Chaetomiaceae) for the Egyptian and African mycobiota. Microb Biosyst J 2(2):6–9

    Google Scholar 

  • Brewer D, Jerram WA, Taylor A (1968) The production of cochliodinol and related metabolites by Chaetomium species. Can. J Microbial. 14:861–866

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, Jerram WA, Meiler, Taylor A (1970) The toxicity of cochliodinol, and antibiotic metabolite of Chaetomium spp. Can J Microbiol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, Taylor A (1978) The production of toxic metabolites by Chaetomium spp. isolated from soils of permanent pasture. Can J Microbiol 24:1078–1081

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, Duncan JM, Jerram WA, Leach CK, Safe S,Taylor A, Vining LC, Archibald RM, Stevenson RG, Mirocha CJ, Christensen CM (1972) Ovine ill-thrift in Nova Scotia. 5. The production and toxicology of chetomin, a metabolite of Chaetomium spp. Can J Microbiol 18:1129–1137

    Article  CAS  PubMed  Google Scholar 

  • Brewer D, McInnes AG, Smith DG, Taylor A, Walter JA, Loosly HR, Kis ZL (1978) Sporidesmins. Part 16. The structure of chetomin, a toxic metabolites of Chaetomium cochliodes, by nitrogen-15 and carbon-13 nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin I, 1248–1254

    Google Scholar 

  • Bridge PD, Spooner BM (2012) Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem. Fungal Ecol 5:381–394

    Article  Google Scholar 

  • Brock TD (1979) Ecology of saline lakes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Dahlem Konferenzen, Berlin, pp 29–47

    Google Scholar 

  • Buston HW, Moss MO, Tyrrell D (1966) The influence of carbon dioxide on growth and sporulation of Chaetomium globosum. Trans Brit Mycol Soc 49:387–396

    Article  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005a) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244(2):229–234

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitasˇ A, Gunde-Cimerman N (2005b) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48(1):73–79

    Article  Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51(2):155–166

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39:183–204

    Google Scholar 

  • Callaghan TV, Björn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA et al (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 33:404–417

    Article  PubMed  Google Scholar 

  • Cannon PF. 1986 – A revision of Achaetomium, Achaetomiella and Subramaniula, and some similar species of Chaetomium. Transactions of the British Mycological Society 87, 45–76. http://dx.doi.org/10.1016/S0007-1536(86)80004-3

    Article  Google Scholar 

  • Cantrell SA, Casillas-Martinez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  CAS  PubMed  Google Scholar 

  • Cano J, Guarro J. 1987 – Soil ascomycetes from Spain XII. Chaetomium biporatum sp. nov. Nova Hedwigia 44, 543–546.

    Google Scholar 

  • Carter A (1982) A taxonomic study of the ascomycete genus Chaetomium Kunze [doctoral dissertation].Department of Botany, University of Toronto, Toronto

    Google Scholar 

  • Carris, L. M. & Glawe, D. A. (1987). Chaetomium histoplasmoides, a new species isolated from cysts of Heterodera glycines in Illinois. Mycotaxon 29. 383-391.

    Google Scholar 

  • Castagnoli E, Andersson MA, Mikkola R, Kredics L, Marik T, Kurnitski J, Salonen H (2017) Indoor chaetomium-like isolates: resistance to chemicals, fluorescence and mycotoxin production. In: Säteri J, Ahola M (eds) Sisäilmastoseminaari 2017, Helsinki, 15.03.2017, vol 35. (SIY raportti 35). Sisäilmayhdistys ry, pp 227–232

    Google Scholar 

  • Chahal DS, Hawksworth DL (1976) Chaetomium cellulolyticum, a new thermotolerant and cellulolytic Chaetomium, I. isolation, description and growth rate. Mycologia 68:600–610

    Article  Google Scholar 

  • Chapman ES, Fergus CL (1975) Germination of ascospores of Chaetomium globosum. Mycologia 67(5):1048–1052

    Article  Google Scholar 

  • Chen KT (1973) Some new species of Chaetomium and Septaria. Acta Microbiol Sin 13:124–128

    Google Scholar 

  • Chen Y, Eisner JD, Kattar MM, Rassoulian-barrett SL, Lafe K, Bui U, Limaye AP, Cookson BT (2001) Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol 39(11):4042–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chivers AH (1912) Preliminary diagnoses of new species of Chaetomium. Proc Am Acd Arts Sci 48:83–88

    Article  Google Scholar 

  • Chivers AH (1915) A monograph of the genera Chaetomium and Ascotricha. Memoirs Torrey Bot Club 14:155–240

    Google Scholar 

  • Chourasia HK (1995) Mycobiota and mycotoxins in herbal drugs of Indian pharmaceutical industries. Mycol Res 99:697–703

    Article  CAS  Google Scholar 

  • Christensen M (1981) A synoptic key and evaluation of species in the Aspergillus flavus group. Mycologia 73:1056–1084

    Article  Google Scholar 

  • Cooke JC (1969a) Morphology of Chaetomium erraticum. Mycologia 56(3):335–340

    Google Scholar 

  • Cooke JC (1969b) Morphology of Chaetomium funicolum. Mycologia 61(6):1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Cooke JC (1970) Morphology of Chaetomium trilaterale. Mycologia 62(2):282–288

    Article  Google Scholar 

  • Corda ACJ (1837) Icones Fungorum 1. Prague

    Google Scholar 

  • Cullen D, Andrews JH (1984) Evidences for the role of antibiosis in the antagonism of Chaetomium globosum to the apple scab pathogen Venturia inaequalis. Canadian J Bot 62:1819–1823

    Article  Google Scholar 

  • Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers 39:45–87

    Google Scholar 

  • de Hoog GS, Ahmed SA, Najafzadeh MJ, Sutton DA, Keisari MS, Fahal AH, Eberhardt U, Verkleij GJ, Xin L, Stielow B, van de Sande WWJ (2013) Phylogenetic findings suggest possible new habitat and routes of infection of human eumyctoma. PLoS Negl Trop Dis 7:e2229. https://doi.org/10.1371/journal.pntd.0002229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decock C, Hennebert GL (1997) A new species of Chaetomium from Ecuador. Mycol Res 101:309–310

    Article  Google Scholar 

  • Dhingra OD, Mizubuti ESG, Santana FM (2003) Chaetomium globosum for reducing primary inoculum of Diaporthe phaseolorum f. sp. meridionalis in soil surface soybean stubble in field conditions. Biol Control 26:302–310

    Article  Google Scholar 

  • Di Pietro A, Gut-Rella M, Pachlatko JP, Schwin FJ (1992) Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping off. Phytopathology 82:131–135

    Article  Google Scholar 

  • Dmitriev VV, Gilichinsky DA, Faizutdinova RN, Shershunov IN, Golubev WI, Duda VI (1997a) Occurrence of viable yeasts in 3-million-year-old permafrost in Siberia. Mikrobiologiya 66:655–660

    Google Scholar 

  • Dmitriev VV, Gilichinsky DA, Faizutdinova RN, Ostroumova NV, Golubev WI, Duda VI (1997b) Yeasts in late Pleistocene-early Pleistocene Siberian permafrost. Cryosphere of the Earth 1:67–70

    Google Scholar 

  • Doveri F (2008) – Aggiornamento sul genere Chaetomium con descrizione di alcune specie coprofile, nuove per l’Italia – An update on the genus Chaetomium with descriptions of some coprophilous species, new to Italy. Pagine di Micologia 29:1–60

    Google Scholar 

  • Doveri F (2004) Fungi Fimicoli Italici. Trento, A.M.B: Fondazione Studi Micologici. 1104 p

    Google Scholar 

  • Doveri F (2011) Additions to “Fungi Fimicoli Italici”: an update on the occurrence of coprophilous Basidiomycetes and Ascomycetes in Italy with new records and descriptions. Mycosphere 2(4):331–427

    Google Scholar 

  • Doveri F (2013) An additional update on the genus Chaetomium with descriptions of two coprophilous species, new to Italy. Mycosphere 4:820–846

    Article  Google Scholar 

  • Doveri F (2016) Description of Chaetomium aureum, Corynascus sepedonium and Coniochaeta hansenii newly recorded from Italy and a key to coprophilous Chaetomiaceae and Coniochaetaceae. Ascomycete.org 8(1):7–24

  • Doveri F (2018) On a new species of Chaetomidium, C. vicugnae, with a cephalothecoid peridium and its relationships with Chaetomiaceae (Sordariales). Ascomycete.org 10(2):86–96. https://doi.org/10.25664/ART-0231

  • Dreyfuss M (1975) Taxonomische Untersuchungen innerhalb der Gattung Chaetomium. Sydowia 28:50–133

    Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  • El-Buni AM, Rattan SS (1981) Check list of Libyan Fungi. Department of Botany, Al Faateh University, Tripoli, Libya, 169 pages

    Google Scholar 

  • Ellis DH (1981) Ascocarp morphology and terminal hair ornamentation in thermophilic Chaetomium species. Mycologia 73(4):755–773

    Article  Google Scholar 

  • El-Said AHM, Saleem A (2008) Ecological and physiological studies on soil fungi at western region, Libya. Mycobiology 36:109

    Article  Google Scholar 

  • Feau N, Vialle A, Allaire M, Tanguay P, Joly DL, Frey P, Callan BE, Hamelin RC (2009) Fungal pathogen identifications: a case study with DNA barcodes on Melampsora rusts of Aspen and White poplar. Mycol Res J 113:713–724

    Article  CAS  Google Scholar 

  • Fergus CL, Delwiche CJ (1975) The effects of nutrients and temperature on germination and viability of the ascospores of Chaetomium rectopilium. Mycologia 67(4):722–732

    Article  CAS  PubMed  Google Scholar 

  • Figueras MJ, Guarro J (1988) A scanning electron microscopic study of ascoma development in Chaetomium malaysiense. Mycologia 80(3):298–306

    Article  Google Scholar 

  • Freire FCO, Kozakiewicz Z, Paterson RRM (1999) Mycoflora and mycotoxins of Brazilian cashew kernels. Mycopathologia 145:95–103

    Article  CAS  PubMed  Google Scholar 

  • Friedman AH (1998) Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen—Chaetomium atrobrunneum: case report— comment. Neurosurgery 43:1469

    Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 2004:201–241

    Google Scholar 

  • Frøslev TG, Jeppesen TS, Læssøe T, Kjoller R (2007) Molecular phylogenetics and delimitation of species in Cortinarius section Calochroi (Basidiomycota, Agaricales) in Europe. Mol Phylogenet Evol 44:217–227

    Article  PubMed  CAS  Google Scholar 

  • Gashgari RM, Elhariry HM, Gherbawy YA (2013) Molecular detection of mycobiota in drinking water at four different sampling points of water distribution system of Jeddah City (Saudi Arabia). Geomicrobiol J 30:29–35

    Article  Google Scholar 

  • Geiser DM, Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K (2004) Fusarium-ID v.1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    Article  CAS  Google Scholar 

  • Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gené J, Guarro J (1996) A new Chaetomium from Thailand. Mycol Res 100:1005–1009

    Article  Google Scholar 

  • Gonçalves AB, Paterson RRM, Lima N (2006) Survey and significance of filamentous fungi from tap water. Int J Hyg Environ Health 209:257–264

    Article  PubMed  Google Scholar 

  • Göttlich E et al (2002) Fungal flora in groundwater-derived public drinking water. Int J Hyg Environ Health 205:269–279

    Article  PubMed  Google Scholar 

  • Greif MD, Stchigel AM, Miller AN, Huhndorf SM (2009) A re-evaluation of genus Chaetomidium based on molecular and morphological characters. Mycologia 101:554–564

    Article  CAS  PubMed  Google Scholar 

  • Grishkan I (2018) Thermotolerant mycobiota of Israeli soils. J Basic Microbiol 58:30–40. https://doi.org/10.1002/jobm.201700517

    Article  CAS  PubMed  Google Scholar 

  • Grishkan I, Nevo E (2010) Spatiotemporal distribution of soil microfungi in the Makhtesh Ramon area, central Negev desert, Israel. Fungal Ecol 3:326e337

    Article  Google Scholar 

  • Grishkan I, Nevo E, Wasser SP (2003) Soil micromycete diversity in the hypersaline Dead Sea coastal area, Israel. Mycol Progress 2:19–28

    Article  Google Scholar 

  • Guarro J, Soler L, Rinaldi MG (1995) Pathogenicity and antifungal susceptibility of Chaetomium species. Eur J Clin Microbiol Infect Dis 14:613–618

    Article  CAS  PubMed  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitasˇ A (2000) Hypersaline waters in salterns –natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32(3):235–240

    CAS  Google Scholar 

  • Guppy KH, Chinnamma T, Kurian T, Douglas A (1998) Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen—Chaetomium atrobrunneum: case report. Neurosurgery 43:1463–1468

    CAS  PubMed  Google Scholar 

  • Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I (2006) Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol 72:7586–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageskal G, Lima N, Skaar I (2009) The study of fungi in drinking water. Mycol Res 113:165–172

    Article  PubMed  CAS  Google Scholar 

  • Halwagy R, Moustafa AE, Kame SM (1982) Ecology of the soil mycoflora in the desert of Kuwait. J Arid Environ 5:109–125

    Article  Google Scholar 

  • Hawksworth DL, Wells H (1973) Ornamentation on the terminal hairs in Chaetomium Kunze ex Fr. and some allied genera. Mycol Pap 134:1–24

    Google Scholar 

  • Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B 270:S96–S99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess WM, Müller E, Aue R (1967) Germ pores of Chaetomium ascospores. Naturwissenschaften 19:521–522. https://doi.org/10.1007/BF01129384

    Article  Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and seagrasses. Oxford University Press, Oxford, 272pp

    Book  Google Scholar 

  • Hoppin EC, McCoy EL, Rinaldi MG (1983) Opportunistic mycotic infection caused by Chaetomium in a patient with acute leukemia. Cancer 53:555–556

    Article  Google Scholar 

  • Horie, Y. and Udagawa, S. 1990. New or interesting Chaetomium species from herbal drugs. Trans. Mycol. Soc. Japan 31: 249–258.

    Google Scholar 

  • Hubka V (2015) Chaetomium. In: Paterson RRM, Lima NMVS (eds) Molecular biology of food and water borne mycotoxigenic and mycotic fungi of humans. CRC Press, Boca Raton, pp 211–228

    Google Scholar 

  • Index Fungorum Partnership – IFP (2019) Index Fungorum. Available at http://www.indexfungorum.org/. Accessed June 15, 2019

  • Ismail ME, Abdalla HM (2005) The fungus Chaetomium globosum a new pathogen to pear fruits in Egypt. Assiut J Agri Sci 36:177–188

    Google Scholar 

  • Ivanushkina NE, Kochkina GA, Ozerskaya SM (2005) Fungi in ancient permafrost sediments of the Arctic and Antarctic regions. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, pp 127–139

    Chapter  Google Scholar 

  • Ivarson KC (1965) The microbiology of some permafrost soils in the McKenzie Valley, N.W.T. Arctic 18:256–260

    Article  Google Scholar 

  • Jin L, Liu F, Sun W, Zhang F, Karuppiah V, Li Z (2014) Pezizomycotina dominates the fungal communities of South China Sea Sponges Theonella swinhoei and Xestospongia testudinaria. FEMS Microbiol Ecol 90:935–945. https://doi.org/10.1111/1574-6941.12446

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Khalil AMA, El-sheikh HH, Sultan MH (2013) Distribution of Fungi in mangrove soil of coastal areas at Nabq and Ras Mohammed protectorates. Int J Curr Microbiol App Sci 2(12):264–274

    Google Scholar 

  • Kikuchi T, Kadota S, Suehara H, Nishi A, Tsubaki K (1981) Odorous metabolites of a fungus, Chaetomium globosum Kunze ex Fr.: identification of geosmin, a musty-smelling compound. Chem Pharm Bull 29:1782–1784

    Article  CAS  Google Scholar 

  • Kowalik R, Sadurska I (1973) Microflora of papyrus from samples of Cairo Museum. Stud Conserv 18:1–24

    CAS  Google Scholar 

  • Kunze G, Schmidt JC (1817) Chaetomium. Myc Heft 1:15

    Google Scholar 

  • Kurek E, Korniłłowicz-Kowalska T, Słomka A, Melke AJ (2007) Characteristics of soil filamentous fungi communities isolated from various micro-relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Pol Polar Res 28:57–73

    Google Scholar 

  • Legendre P, Rogers DJ (1972) Characters and clustering in taxonomy: a synthesis of two taximetric procedures. Taxon 21:567–606

    Article  Google Scholar 

  • Lesire V et al (1999) Possible role of Chaetomium globosum in infection after autologous bone marrow transplantation. Intensive Care Med 25:124–125

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao XM, Wang XW (2012) Growth temperature of Chaetomium species and its taxonomic value. Mycosystema 31:213e222

    Google Scholar 

  • Lin Y, Li X (1995) First case of phaeohyphomycosis caused by Chaetomium murorum in China. Chin J Dermatol 28:367–369

    Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among Ascomycetes: evidence from an RNA Polymerse II Subunit. Mol Biol Evol 16(12):1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Lumbsch HT (2000) Phylogeny of filamentous ascomycetes. Naturwissenschaften 87:335–342

    Article  CAS  PubMed  Google Scholar 

  • Maharachchikumbura SSN, Al-Sadi AM, Al-Kharousi M, AlSaady NA, Hyde KD (2016) A checklist of fungi in Oman. Phytotaxa 273:219–261

    Article  Google Scholar 

  • Mahmoud SAZ, Abou E-FM, El-Mofty M (1964) Studied on the rhizosphere microflora of a desert plants. Folia Microbiol 9:1–8

    Article  Google Scholar 

  • Mandeel Q (2002) Microfungal community with rhizosphere soil of Zygophyllum qatarense in arid habitats of Bahrain. J Arid Environ 50:665–681

    Article  Google Scholar 

  • Manoharachary C, Kunwar IK, Tilak KV (2013) Diversity and characterization of fungi and its relevance. Indian Phytopath 66(1):10–13

    Google Scholar 

  • Mansour AMA (2010) Contribution to knowledge of some soil fungi in eastern region, in Libya. J Product Develop (Agri Res) 15(3):395–404

    Google Scholar 

  • Miller AN, Huhndorf SM (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospores morphology in the Sordariales (Ascomycota, Fungi). Mol Phylogenet Evol 35:60–75

    Article  CAS  PubMed  Google Scholar 

  • Millner PD (1977) Radial growth responses to temperature by 58 Chaetomium species, and some taxonomic relationships. Mycologia 69:492–502

    Article  Google Scholar 

  • Millner PD, Motta JJ, Lentz PL (1977) Ascospores, germ pores, ultrastructure and thermophilism of Chaetomium. Mycologia 69:720–733. https://doi.org/10.2307/3758862

    Article  Google Scholar 

  • Min XJ, Hickey DA (2007) Assessing the effect of varying sequence length on DNA barcoding of fungi. Mol Ecol Notes 7:365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montasir AH, Mostafa MA, Elwan SH (1956a) Development of soil microflora under Zygophyllum album L. and Zygophyllum coccineum L. Ain Shams Sci Bull 1:9–22

    Google Scholar 

  • Montasir AH, Mostafa MA, Elwan SH (1956b) Development of soil microflora in relation to vegetation along a transect line at yellow hills, North Cairo. Ain Shams Sci Bull 1:23–32

    Google Scholar 

  • Moubasher AH, Al-Subai AAT (1987) Soil fungi in State of Qatar. Publications of Sientific and Applied Research Centre, University of Qatar, Doha, Qatar

    Google Scholar 

  • Moubasher AH, El-Dohlob SM (1970) Seasonal fluctuation of Egyptian soil fungi. Trans Br Mycol Soc 54:45–51

    Article  Google Scholar 

  • Moubasher AH, Moustafa AF (1970) A survey of Egyptian soil fungi with special reference to Aspergillus, Penicillium and Penicillium related genera. Trans Br Mycol Soc 54:35–44

    Article  Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1985) Studies on soil mycoflora of Wadi Bir- El- Ain, Eastern Desert, Egypt. Cryptogam Mycol 6:129–143

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, El-Maghraby OMO (1988) Seasonal fluctuations of soil and air borne fungi of Wadi Bir- El-Ain in Eastern Desert of Egypt. Nat Monspel Ser Bot 52:57–70

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Sater MA (1990) Halophilic and halotolerant fungi in cultivated, desert and salt marsh soils from Egypt. Acta Mycol 27:65–81

    Google Scholar 

  • Mouchacca J (1971) Pseudeurotium desertorum sp. nov. Revue de Mycologie 36:123–127

    Google Scholar 

  • Mouchacca J (1973a) Deux Alternaria des sols arides d'Egypte: A. chlamydospora sp. nov. et A. phragmospora van Emden. Mycopathol Mycol Appl 50:217–225

    Article  Google Scholar 

  • Mouchacca J (1973b) Les Thielavia des sols arides: espèces nouvelles et analyse générique. Bulletin de la Société Mycologique de France 89:295–311

    Google Scholar 

  • Mouchacca J (1977) Sur un nouveau Discomycetes Ascobolus egyptiacus. Travaux dédiès à G. Viennot-Bourgin, Société Francaise de Phytopathologoie, Paris, pp 236–267

    Google Scholar 

  • Mouchacca J (1982) Etude analytique de la mycoflore de quelques sols de régions arides de l’Egypte. Thèse de Doctorat d’Etat, Muséum National d'Histoire Naturelle et Université Pierre et Marie Curie (Paris VI), 247 pp., 90 tabs., 30 figs

    Google Scholar 

  • Mouchacca J (1995) Check-list of novel fungi from the Middle East described mainly from soil since 1930. Sydowia 47:240–257

    Google Scholar 

  • Mouchacca J, Joly P (1974) Etude de la mycoflore des sols arides de l’Egypte. I. Le genre Penicillium. Revue d’Ecologie et de Biologie du Sol 11:67–88

    Google Scholar 

  • Mouchacca J, Joly P (1976) Etude de la mycoflore des sols arides de l’Egypte. II. Le genre Aspergillus. Revue d’Ecologie et de Biologie du Sol 13:293–313

    Google Scholar 

  • Mouchacca J, Nicot J (1973) Les Fusariella des sols arides. Revue de Mycologie 37:168–182

    Google Scholar 

  • Moustafa AF, Abdel-Azeem AM (2005) The genus Chaetomium in Egypt. El-Minia. Sci Bull 16:235–256

    Google Scholar 

  • Moustafa AF, Abdel-Azeem AM (2011) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt. J Basic Appl Mycol 2:1–27

    Google Scholar 

  • Moustafa AF, Al-Musallam AA (1975) Contribution to the fungul flora of Kuwait. Trans Br Mycol Soc 65(3):547–553

    Article  Google Scholar 

  • Moustafa AF, Ess El-Din EK (1989) Chaetomium sinaiense sp. nov., a new soil ascomycete from Egypt. Canadian Journal of Botany 67:3417–3419

    Article  Google Scholar 

  • Mtibaà R, de Eugenio L, Ghariani B et al (2017) A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. 3 Biotech 7:329. https://doi.org/10.1007/s13205-017-0973-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Murgia M, Fiamma M, Barac AM, Deligios M, Mazzarello V, Paglietti B, Cappuccinelli PA, Al-Qahtani A, Squartini A, Rubino S, Al-Ahdal MN (2018) Biodiversity of fungi in hot desert sands. MicrobiologyOpen. https://doi.org/10.1002/mbo3.595

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustafa AI, Abdel-Azeem AM, Salem FM (2013) Surveying and exploitation of some taxa for extracellular biosynthesis of silver nanoparticles. Third international congress on fungal conservation, Akyaka, Mugla, Turkey, 11–15 November 2013. Abstract book: 44

    Google Scholar 

  • Naguib AI, Mouchacca J (1970–1971) The mycoflora of Egyptian desert soils. Bulletin de l’Institut d’Egypte 52:37–61

    Google Scholar 

  • Naim MS (1967a) Contribution to the knowledge of soil fungi in Libya. I. Rhizosphere and soil fungi of Artemisia herba alba in Tripoli. Mycopath Mycol Appl 31:296–299

    Article  Google Scholar 

  • Naim MS (1967b) Contribution to the knowledge of soil fungi in Libya. II. Fungus flora under Citrus trees in Libya. Mycopath Mycol Appl 31:300–304

    Article  Google Scholar 

  • Nassar MSM (1998) Soil mycoflora of Wadi Abu-Subayrah at Aswan region at Eastern Desert of Egypt. Egypt J Bot 38(1–2):21–46

    Google Scholar 

  • Nasser LA (2004) Incidence of terrestrial fungi in drinking water collected from different schools in Riyadh region, Saudi Arabia. Pak J Biolog Sci 7:1927–1932

    Article  Google Scholar 

  • Natori S (1977) Toxic cytochalasins. In: Rodricks JV, Hesseltine CW, Mehlman MA (eds) Mycotoxins in human and animal health. Pathotox Publishers, Park Forest South, Illinois, pp 559–581

    Google Scholar 

  • Nienow, J. A., and Friedmann, E. I. 1993. Terrestrial lithophytic (rock) communities, in Antarctic Microbiology, ed. E. I. Friedmann (New York, NY: Wiley-Liss), 343–412.

    Google Scholar 

  • Nixon, K. 2002. WINCLADA v.1.00.08. Character analysis program. Published by the author.

    Google Scholar 

  • Nguyen HDT, Seifert KA (2008) Description and DNA barcoding of three new species of Leohumicola from South Africa and the United States. Persoonia 21:57–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson RH, Ryberg M, Kristiansson E et al (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1:e59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nour MA (1956) A preliminary survey of fungi in some Sudan soils. Trans Br Mycol Soc 39:357–360

    Article  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are non-orthologous. Mol Phylogenet Evol 7:103–116

    Article  PubMed  Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci. 52, 229–237. https://doi.org/10.1016/j.pss.2003.08.019

    Article  Google Scholar 

  • Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Ozerskaya SM, Kochkina GA, Ivanushkina NE, Knyazeva EV, Gilichinskii DA (2008) The structure of micromycete complexes in permafrost and cryopegs of the Arctic. Microbiology 77:482–489

    Article  CAS  Google Scholar 

  • Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Margesin R (ed) Permafrost soils. Soil biology, vol Vol. 16. Springer, pp 85–95

    Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2009) Diversity of yeasts from puddles in the vicinity of Midre Lovénbreen glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Article  PubMed  CAS  Google Scholar 

  • Paiva de Carvalho, Hugo; Mesquita, Nuno; Trovão, João; Fernández Rodríguez, Santiago; Pinheiro, Ana Catarina; Gomes, Virgínia; Alcoforado, Ana; Gil, Francisco; Portugal, António. 2018. Fungal contamination of paintings and wooden sculptures inside the storage room of a museum: Are current norms and reference values adequate? (Acknowledged Proofreader and Translator). Journal of Cultural Heritage 34: 268-276. http://dx.doi.org/10.1016/j.culher.2018.05.001

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Fokkema NJ, van den Heuvel J (eds) Microbial ecology of the leaves. Cambridge University Press, Cambridge, pp 185–187

    Google Scholar 

  • Pimentel M, Lembo A, Chey W et al (2011) Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 364:22–32

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, A. C. M. da S. (2014) Fungal communities in archives: assessment strategies and impact on paper conservation and human health. Universidade Nova de Lisboa.

    Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, Heidelberg, Germany

    Book  Google Scholar 

  • Pitt JI et al (1993) The normal mycoflora of commodities from Thailand. 1. Nuts and oilseeds. Int J Food Microbiol 20:211–226

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI et al (1994) The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Int J Food Microbiol 23:35–53

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI et al (1998) The mycoflora of food commodities from Indonesia. J Food Mycol 1:41–60

    Google Scholar 

  • Plomley NJB (1959) Formation of the colony in the fungus Chaetomium. Aust J Biol Sci 12(1):53–64

    Article  Google Scholar 

  • Pornsuriya C, Soytong K, Poeaim S, Kanokmedhakul S, Khumkomkhet P, Lin FC, Wang HK, Hyde KD. 2011 – Chaetomium siamense sp. nov., a soil isolate from Thailand, produces a new chaetoviridin, G. Mycotaxon 115, 19–27. http://dx.doi.org/10.5248/115.19

    Google Scholar 

  • Prabhakaran N, Prameeladevi T, Sathiyabama M, Kamil D (2015) Screening of different Trichoderma species against agriculturally important foliar plant pathogens. J Environ Biol 36:191–198

    PubMed  Google Scholar 

  • Prokhorov VP, Linnik MA (2011) Morphological, cultural and biodestructive peculiarities of Chaetomium species. Mosc Univ Biol Sci Bull 66(3):95–101

    Article  Google Scholar 

  • Pryce TM, Palladino S, Kay ID, Coombs GW (2003) Rapid identification of fungi by sequencing the ITS l and ITS 2 regions using an automated capillary electrophoresis system. Med Mycol 41:369–381

    Article  CAS  PubMed  Google Scholar 

  • Rai JN, Tewari JP, Mukerji KG. 1964 – Achaetomium, a new genus of ascomycetes. Canadian Journal of Botany 42, 693–697. http://dx.doi.org/10.1139/b64-064

    Article  Google Scholar 

  • Rajesh AM, Prameeladevi T, Malathi VG, Kamil D, Borah JL, Prabhakaran N, Srinivasa N (2013) A combined morpho-genetic approach towards identification of Trichoderma species. J Mycopathol Res 51(1):19–28

    Google Scholar 

  • Reeve JN, Christner BC, Kvitko BH, Mosley-Thompson E, Thompson LG (2002) Life in glacial ice (Abstract). In: Rossi M, Bartolucci S, Ciaramella M, Moracci M (eds) “Extremophiles 2002,” 4th International Congress on Extremophiles, 22–26 September 2002, Naples, Italy 27

    Google Scholar 

  • Rivkina, E.N., Friedmann, E.I., McKay, C.P. and Gilichinsky, D.A. (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66, 3230–3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rock JP (1998) Cerebral fungal infections in the immunocompromised host: a literature review and a new pathogen—Chaetomium atrobrunneum: case report—comment. Neurosurgery 43:1469

    Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59(5):1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez K, Stchigel AM, Guarro J (2002) Three new species of Chaetomium from soil. Mycologia 94:114–124

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Roe AD, Rice AV, Bromilow SE, Cooke JEK, Sperling FAH (2010) Multilocus species identification and fungal DNA barcoding: insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Res. https://doi.org/10.1111/j.1755-0998.2010.02844

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Saadabi AMA (2006) On the fungal flora of Saudi Arabian soils. Res J Microbiol 1:280–284

    Article  Google Scholar 

  • Saito M, Singh RB, Saite M (1976) Reports on study of mycotoxins in foods in relation to liver diseases in Malaysia and Thailand, p. 85 (University of Tokyo, Tokyo, Japan, 1976)

    Google Scholar 

  • Salama AM, Elbatanoni K, Ali MI (1971) Studies on the fungal flora of Egyptian soils. I. Western Mediterranean coast and Libyan Desert. United Arab Republic J Bot 14(1):99–114

    Google Scholar 

  • Salar RK, Aneja K (2007) Thermophilic fungi: taxonomy and biogeography. J Agric Technol 3:77e107

    Google Scholar 

  • Salem FM, Abdel-Azeem AM (2014) Screening of anticancer metabolites produced by endophytic fungi. LAP LAMBERT Academic Publishing. ISBN 978–3–659-53697-7

    Google Scholar 

  • Samson RA, Mouchacca J (1974) Some interesting species of Emericella and Aspergillus from Egyptian desert soil. Antonie Van Leeuwenhoek 40:121–131

    Article  CAS  PubMed  Google Scholar 

  • Samson RA, Mouchacca J (1975) Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie Van Leeuwenhoek 41:343–351

    Article  CAS  PubMed  Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Article  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf A, Robert V, Spouge JL, André Levesque C, Chen W (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi, and fungal barcoding consortium. Proc Natl Acad Sci 109(16):6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Robbertse B, Robert V et al (2014) Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi. Database (Oxford). https://doi.org/10.1093/database/bau061

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz B, Boyle C, Drager S et al (2002) Endophytic fungi; a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    Article  CAS  Google Scholar 

  • Schwarz P, Bretagne S, Gantier JC, Garcia-Hermoso D, Lortholary O, Dromer F, Dannaoui E (2006) Molecular identification of Zygomycetes from culture and experimentally infected tissues. J Clin Microbiol 44:340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89

    Article  CAS  PubMed  Google Scholar 

  • Sekhar VC (2015) Morphology and selection of potential region for DNA barcoding to identify chaetomium species. PhD thesis, Plant Pathology Section, Faculty of Post-Graduate School, Indian Agricultural Research Institute, New Delhi, India

    Google Scholar 

  • Sekita S, Yoshihira K, Natori S (1980) Chaetochromin, a bis(naphthodihydropyran-4-one) mycotoxin from Chaetomium thielavioideum: application of 13C-IH long-range coupling to the structure elucidation. Chem Pharm Bull 28:2428–2435

    Article  CAS  Google Scholar 

  • Sekita S, Yoshihira K, Natori S, Udagawa S, Mouri T, Sugiyama Y, Kurata H, Umeda M (1981) Mycotoxin production by Chaetomium spp. and related fungi. Can J Microbiol 27:766–772

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Onofri S, Zucconi L, Isola D, Rottigni M, Ghiglione C, Piazza P, Alvaro MC, Schiaparelli S (2015) Distributional records of Antarctic fungi based on strains preserved in the Culture Collection of Fungi from Extreme Environments (CCFEE) Mycological Section associated with the Italian National Antarctic Museum (MNA). MycoKeys 9:57–71. https://doi.org/10.3897/mycokeys.10.5343

    Article  Google Scholar 

  • Seth HK (1970) A monograph of the genus Chaetomium. Beih Nova Hedwig 37:1–133

    Google Scholar 

  • Seth HK (1972) A monograph of the genus Chaetomium. In Beih Nova Hedwigia, 37, pp 133

    Google Scholar 

  • Seth HK (1983) Numerical taxonomy of the genus Chaetomium Kze. In: Felsenstein J (ed) Numerical taxonomy. NATO ASI series (Series G: ecological sciences), vol vol 1. Springer, Berlin, Heidelberg

    Google Scholar 

  • Sharma G, Pandey RR (2010) Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes. J Yeast Fungal Res 1(8):157–164

    Google Scholar 

  • Sharma R, Kulkarni G, Sonawane MS, Shouche YS (2013) A new endophytic species of Chaetomium from Jatropha podagrica. Mycotaxon 124:117–126

    Article  Google Scholar 

  • Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence data on the taxonomy of anamorphic fungi. Fungal Divers 26:1–54

    Google Scholar 

  • Skolko AJ, Groves JW (1948) Notes on seed-borne fungi V. Chaetomium species with dichotomously branched hairs. Can J Res C 26:269–280

    Article  Google Scholar 

  • Skolko AJ, Groves JW (1953) Notes on seed-borne fungi. VII Chaetomium. Can J Bot 31:779–809

    Article  Google Scholar 

  • Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. W.H. Freeman & Co., New York.

    Google Scholar 

  • Somrithipol S (2004) Coprophilous fungi. In: Jones EBG, Tanticharoen M, Hyde KD (eds) Thai fungal diversity. BIOTEC, Thailand, pp 119–128

    Google Scholar 

  • Somrithipol S, Hywel-Jones NL, Jones EBG (2004) Seed fungi. In: Jones EBG, Tanticharoen M, Hyde KD (eds) Thai fungal diversity. BIOTEC, Thailand, pp 129–140

    Google Scholar 

  • Sörgel G (1960) Zum Problem der Trennung von Arten bei Pilzen, dargestellt am Beispiel der Ascomycetengattung Chaetomium. Arch Mikrobiol 36:51–66. https://doi.org/10.1007/BF00405942

    Article  Google Scholar 

  • Sörgel G (1961) Zur Variabilitât in der Gattung Chaetomium, dargestellt am Beispiel der Art Ch. carinthiacumn. sp. In Arch Mikrobiol 40:383–394

    Article  Google Scholar 

  • Soytong K (1992a) Antagonism of Chaetomium cupreum to Pyricularia oryzae. J Plant Protect Tropics 9:17–24

    Google Scholar 

  • Soytong K (1992b) Biological control of tomato wilt caused by Fusarium oxysporum f.sp. lycopersici using Chaetomium cupreum. Kasetsart J (Nat Sci) 26:310–313

    Google Scholar 

  • Soytong K, Kanokmedhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium®) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Divers 7:1–15

    Google Scholar 

  • Spalding MD, Blasco F, Field CD. 1997. World mangrove atlas. International Society for Mangrove Ecosystems, Okinawa, Japan 178.

    Google Scholar 

  • Spatafora JW (1995) Ascomal evolution of filamentous ascomycetes: evidence from molecular data. Can J Bot 73(S1):811–815

    Article  Google Scholar 

  • Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of in plant endophyte concentration. Ann Bot 98(2):379–387

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridhar KR (2009) Mangrove fungi of the Indian peninsula. In: Sridhar KR (ed) Frontiers in fungal ecology, diversity and metabolites. IK International Publishing House Pvt. Ltd, New Delhi, pp 28–50

    Google Scholar 

  • Stakhov V, Gubin S, Maksimovich S, Rebrikov D, Savilova A, Kochkina G, Ozerskaya S, Ivanushkina N, Vorobyova E (2008) Microbial communities of ancient seeds derived from permanently frozen Pleistocene deposits. Microbiology 77:348–355

    Article  CAS  Google Scholar 

  • Stark AA, Kobbe B, Matsuo D, Buchi G, Wogan GN, Demain AL (1978) Mollicellins: Mutagenic and antibacterial mycotoxins. Appl. Environ. Microbiol. 36:412–420

    Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Stielow JB, Lévesque CA, Seifert KA, Meyer W et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 35:242–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiller MJ, Rosenthal S, Summerbell RC, Pollack J, Chan A (1992) Onychomycosis of the toenails caused by Chaetomium globosum. J Am Acad Dermatol 26:775–776

    Article  CAS  PubMed  Google Scholar 

  • Stockinger H, Kruger M, Schubler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(04):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel GA, Knighton B, Ren Y et al (2008) The production of mycodiesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154(11):3319–3328

    Article  CAS  PubMed  Google Scholar 

  • Suleiman MK, Dixon K, Commander L, Nevill P, Quoreshi AM, Bhat NR, Manuvel AJ, Sivadasan MT (2019) Assessment of the diversity of fungal community composition associated with Vachellia pachyceras and its rhizosphere soil from Kuwait Desert. Front Microbiol 10:63. https://doi.org/10.3389/fmicb.2019.00063. eCollection 2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumalan R, Alexa E, Pop G, Dehelean C, Sumalan R (2011) The biodiversity and dissemination of mycotoxin-producing fungi in cereals and cereal products. In Proceedings of the 46th Croatian and 6th International symposium on agriculture, Opatija, Croatia, 2011, pp 770–773

    Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N (2017) Endolichenic fungi: the lesser known fungal associates of lichens. Mycology 8(3):189–196. https://doi.org/10.1080/21501203.2017.1352048

    Article  PubMed  PubMed Central  Google Scholar 

  • Suwannasai N, Martin MP, Phosri C, Sihanonth P, Whalley AJS (2013) Fungi in Thailand: a case study of the efficacy of an ITS barcode for automatically identifying species within the Annulohypoxylon and Hypoxiylon genera. PLoS One 8(2):545–529

    Article  CAS  Google Scholar 

  • Takano Y, Kobayashi K, Marumo K, Ishikawa Y. 2004. Biochemical indicators and enzymatic activity below permafrost environment. In: Extremophiles 2004, 5th International Conference on Extremophiles, 19–23 Sep. Cambridge, Maryland. Abstract p 84.

    Google Scholar 

  • Thomas C, Mileusnic D, Carey RB, Kampert M, Anderson D (1999) Fatal Chaetomium cerebritis in a bone marrow transplant patient. Hum Pathol 30:874–879

    Article  CAS  PubMed  Google Scholar 

  • Tomita T (2003) Amylin in pancreatic islets and pancreatic endocrine neoplasms. Pathol Int 53(9):591–595

    Article  CAS  PubMed  Google Scholar 

  • Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42(11–12):1182–1187

    Article  Google Scholar 

  • Tschudy RH (1937a) Experimental morphology of some species of Chaetomium. I. Use of cultural reactions in determining species characteristics. Am J Bot 24(7):472–480

    Article  Google Scholar 

  • Tschudy RH (1937b) Experimental morphology of some species of Chaetomium. II. Reactions of species of Chaetomium under various conditions of cultivation. Am J Bot 24(10):657–665

    Article  Google Scholar 

  • Udaiyan K, Hosagoudar VS. 1991 – Some interesting fungi from the industrial water cooling towers of Madras – II. Journal of Economic and Taxonomic Botany 15, 649–666.

    Google Scholar 

  • Udagawa S (1960a) A taxonomic study on the Japanese species of Chaetomium. J Gen Appl Microbiol (Tokyo) 6:223–251

    Article  Google Scholar 

  • Udagawa S (1960b) A taxonomic study on the Japanese species of Chaetomium. J Gen Appl Microbiol 6:223–251

    Article  Google Scholar 

  • Udagawa S (1980) New or noteworthy ascomycetes from southeast Asian soil. 1. Trans Mycol Soc Jpn 21:17–34

    Google Scholar 

  • Udagawa S, Mouri T, Kurata H, Sekita S, Yoshihira K, Natori S, Umeda M (1979) The production of chaetoglobosins, sterigmatocystin, O-methylsterigmatocystin, and chaetocin by Chaetomium spp. and related fungi. Can J Microbiol 25:170–177

    Article  CAS  PubMed  Google Scholar 

  • Udagawa S, Muroi T (1981) Notes on some Japanese Ascomycetes XVI. Transactions of the Mycological Society of Japan. 22(1):11–26

    Google Scholar 

  • Udagawa S, Sugiyama Y (1982) New records and new species of ascomycetous fungi from Nepal, a preliminary report on the expedition of 1980. Reports on the Cryptogamic Study in Nepal, March 1982 (Miscellaneous Publication of the N ational S cience Museum, Tokyo) 11–46

    Google Scholar 

  • Udagawa S, Uchiyama S, Kamiya S (1994) Two new species of pyrenomycetous Ascomycetes from New Caledonia. Mycoscience 35:319–325

    Article  Google Scholar 

  • Udagawa S, Toyazaki N, Yaguchi T (1997) A new species of Chaetomium from house dust. Mycoscience 38:399–402

    Article  Google Scholar 

  • Umikalsom MS, Ariff AB, Shamsuddin ZH, Tong CC, Hassan MA, Karim MIA (1997) Production of cellulase by a wild strain of Chaetomium globosum using delignified oil palm empty-fruit-bunch fibre as substrate. Appl Microbiol Biotechnol 47(5):590–595

    Article  CAS  Google Scholar 

  • Umikalsom MS, Ariff AB, Hassan MA, Karim MIA (1998) Kinetics of cellulase production by Chaetomium globosum at different levels of dissolved oxygen tension using oil palm empty fruit bunch fibre as substrate. World J Microbiol Biotechnol 14(4):491–498

    Article  CAS  Google Scholar 

  • Untereiner WA, Debois V, Naveau FA (2001) Molecular systematics of the ascomycete genus Farrowia (Chaetomiaceae). Can J Bot 79:321–333

    CAS  Google Scholar 

  • Urairuj C, Khanongnuch C, Lumyong S (2003) Ligninolytic enzymes from tropical endophytic Xylariaceae. Fungal Divers 13:209–219

    Google Scholar 

  • Van Teighem P (1875) Sur le developpement du fruit des Chaetomium et les pretendue sexualite des Ascomycetes. C R Acad Sci 81:1110–1113

    Google Scholar 

  • Van Teighem P (1876) Nouvelles observations sur le developpement du perithece des Chaetomium. Bull Soc Bot 23:364–366

    Google Scholar 

  • Vega FE, Posada F, Aime MC et al (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol Article ID 371218:5 pages. https://doi.org/10.1155/2014/371218

    Article  Google Scholar 

  • Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 297–342

    Google Scholar 

  • Vishniac HS, Onofri S (2003) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica Anton. Leeuw./Int. J.G. Mol. Microbiol., 83:231–233

    Google Scholar 

  • Volz PA, Ellanskaya IA, Wasser SP, Nevo E, Grishkan I (2001) Soil microfungi of Israel. Biodiversity of Cyanoprocaryotes, Algae and Fungi of Israel. In: Subramanian CV, Wasser SP (eds). A. P. A. Gantner Verlag, Ruggel/Liechtenstein

    Google Scholar 

  • von Arx JA, Guarro J, Figueras MJ (1986) The ascomycete genus Chaetomium. Beih Nova Hedwig 84:1–162

    Google Scholar 

  • von Arx JA (1970) The genera of fungi sporulating in pure culture. 288: 134 Figs. Ed. J. Cramer, Germany.

    Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Wallenstein MW, McMahon S, Schimel J (2007) Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435. https://doi.org/10.1111/j.1574-6941.2006.00260.x

    Article  CAS  PubMed  Google Scholar 

  • Walther D, Gindrat D (1988) Biological control of damping off of sugar beet and cotton with Chaetomium globosum or a fluorescent Pseudomonas sp. Canadian J Microbiol 34:631–637

    Article  Google Scholar 

  • Wang X-W, Zheng R-Y (2005a) Chaetomium acropullum sp. nov. (Chaetomiaceae, Ascomycota), a new psychrotolerant mesophilic species from China. Nova Hedwig 80:413–417. https://doi.org/10.1127/0029-5035/2005/0080-0413

    Article  Google Scholar 

  • Wang X-W, Zheng R-Y (2005b) Chaetomium ampulliellum sp. nov. (Chaetomiaceae, Ascomycota) and similar species from China. Nova Hedwig 81:247–255. https://doi.org/10.1127/0029-5035/2005/0081-0247

    Article  Google Scholar 

  • Wang XW, Wang XL, Liu FJ, Zhao XM, Li J, Cai L (2014) Phylogenetic assessment of Chaetomium indicum and allied species, with the introduction of three new species and epitypification of C. funicola and C. indicum. Mycol Progress 13(3):719–732. https://doi.org/10.1007/s11557-013-0955-x

    Article  Google Scholar 

  • Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, Crous PW, Samson RA (2016a) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud Mycol 84:145–224. https://doi.org/10.1016/j.simyco.2016.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Lombard L, Groenewald JZ, Lil J, Videira SIR, Samson RA, Liu XZ, Crous PW (2016b) Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36:83–133. https://doi.org/10.3767/003158516X689657

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T (2002) Pictorial atlas of soil and seed fungi, morphologies of cultured fungi and key to species, 2nd edn. CRC Press, Boca Raton.

    Google Scholar 

  • Webb TA, Mundt JO (1978) Molds on vegetables at the time of harvest. Appl Environ Microbiol 35:655–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenbörner M (2001) Pumpkin seeds—the mycobiota and potential mycotoxins. Eur Food Res Technol 212:279–281

    Article  Google Scholar 

  • Whiteside WC (1957) Perithecial initials of Chaetomium. Mycologia 49(3):420–425

    Article  Google Scholar 

  • Wicklow DT (1979) Hair ornamentation and predator defence in Chaetomium. Trans Br Mycol Soc 72(1):107–110

    Article  Google Scholar 

  • Wildman HG (2003) The rise and fall of natural products screening for drug discovery. Fungal Divers 13:221–231

    Google Scholar 

  • Yamamoto Y, Kiriyama N, Shimizu S, Koshimura S (1976) Antitumor activity of asterriquinone – metabolic product from Aspergillus terreus. Gann 67(4):623–4

    Google Scholar 

  • Yamamoto H, Moriyama K, Jinnouchi H, Yagishita K (1980) Studies on terreic acid. Jpn. J. Antibiot. 33:320–328. https://doi.org/10.11553/antibiotics1968b.33.320

  • Yeghen T et al (1996) Chaetomium pneumonia in patient with acute myeloid leukaemia. J Clin Pathol 49:184–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef YA (1974) On the fungal flora of Libyan soils. Arch Microbiol 99:167–171

    Article  Google Scholar 

  • Zaitlin B, Watson SB (2006) Actinomycetes in relation to taste and odour in drinking water: myths, tenets and truths. Water Res 40:1741–1753

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wu W, Cai L (2016) Polyphasic characterisation of Chaetomium species from soil and compost revealed high number of undescribed species. Fungal Biol 121(1):21–43. https://doi.org/10.1016/j.funbio.2016.08.012

    Article  PubMed  Google Scholar 

  • Zhang Y, Wu W, Cai L (2017) Polyphasic characterisation of Chaetomium species from soil and compost revealed high number of undescribed species. Fungal Biol 21(1):21–43. https://doi.org/10.1016/j.funbio.2016.08.012. Epub 2016 Sep 1

    Article  Google Scholar 

  • Zhao P, Luo J, Zhuang GW (2010) Practice towards DNA barcoding of the nectriaceous fungi. Fungal Divers. https://doi.org/10.1007/s13225-010-0064-y

    Article  CAS  Google Scholar 

  • Zhao P, Luo J, Zhuang WY (2011) DNA barcoding of the fungal genus Neonectria and the discovery of two new species. Sci China Life Sci 54:664–674

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Abdel-Azeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Azeem, A.M. (2020). Taxonomy and Biodiversity of the Genus Chaetomium in Different Habitats. In: Abdel-Azeem, A. (eds) Recent Developments on Genus Chaetomium . Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-31612-9_1

Download citation

Publish with us

Policies and ethics