Skip to main content

Some Minimal Cosmologies for Dark Sectors

  • Conference paper
  • First Online:
Illuminating Dark Matter

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 56))

  • 707 Accesses

Abstract

One generic possibility for the origins of dark matter is its production from an internally thermalized hidden sector, with little to no direct involvement of the Standard Model. Any theory that invokes such a thermal dark radiation bath has to address the question of how this dark radiation bath was initially populated in the early universe. Here, we study how the simplest and most robust cosmic histories for minimal hidden sectors inform the signals of hidden sector dark matter, and present some new targets for direct detection and other terrestrial experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Pospelov, A. Ritz, M.B. Voloshin, Phys. Lett. B 662, 53 (2008). https://doi.org/10.1016/j.physletb.2008.02.052

    Article  ADS  Google Scholar 

  2. J.L. Feng, J. Kumar, Phys. Rev. Lett. 101, 231301 (2008). https://doi.org/10.1103/PhysRevLett.101.231301

    Article  ADS  Google Scholar 

  3. J.L. Feng, H. Tu, H.B. Yu, JCAP 0810, 043 (2008). https://doi.org/10.1088/1475-7516/2008/10/043

    Article  ADS  Google Scholar 

  4. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, Phys. Rev. D 79, 015014 (2009). https://doi.org/10.1103/PhysRevD.79.015014

    Article  ADS  Google Scholar 

  5. A. Grassi, J. Halverson, J. Shaneson, W. Taylor, JHEP 01, 086 (2015). https://doi.org/10.1007/JHEP01(2015)086

    Article  ADS  Google Scholar 

  6. J.A. Evans, S. Gori, J. Shelton, JHEP 02, 100 (2018). https://doi.org/10.1007/JHEP02(2018)100

    Article  ADS  Google Scholar 

  7. J.A. Evans, C. Gaidau, J. Shelton, Leak-in dark matter. arXiv:1909.04671 [hep-ph]

  8. P.A.R. Ade et al., Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830

    Article  Google Scholar 

  9. M. Ackermann et al., Phys. Rev. Lett. 115(23), 231301 (2015). https://doi.org/10.1103/PhysRevLett.115.231301

    Article  ADS  Google Scholar 

  10. E. Aprile et al., Phys. Rev. Lett. 119(18), 181301 (2017). https://doi.org/10.1103/PhysRevLett.119.181301

    Article  ADS  Google Scholar 

  11. D.S. Akerib et al., Phys. Rev. Lett. 118(2), 021303 (2017). https://doi.org/10.1103/PhysRevLett.118.021303

    Article  ADS  Google Scholar 

  12. D.S. Akerib et al., Phys. Rev. Lett. 116(16), 161301 (2016). https://doi.org/10.1103/PhysRevLett.116.161301

    Article  ADS  Google Scholar 

  13. X. Cui et al., Phys. Rev. Lett. 119(18), 181302 (2017). https://doi.org/10.1103/PhysRevLett.119.181302

    Article  ADS  Google Scholar 

  14. R. Agnese et al., Phys. Rev. Lett. 116(7), 071301 (2016). https://doi.org/10.1103/PhysRevLett.116.071301

    Article  ADS  Google Scholar 

  15. G. Angloher et al., Eur. Phys. J. C 76(1), 25 (2016). https://doi.org/10.1140/epjc/s10052-016-3877-3

    Article  ADS  Google Scholar 

  16. XENON collaboration, E. Aprile et al., Phys. Rev. Lett. 121 (2018) 111302. arXiv:1805.12562

  17. DARKSIDE collaboration, P.Agnes et al., Phys. Rev. Lett. 121 (2018) 081307. arXiv:1802.06994

  18. D. Curtin et al., Phys. Rev. D 90(7), 075004 (2014). https://doi.org/10.1103/PhysRevD.90.075004

    Article  ADS  Google Scholar 

  19. A.E. Faraggi, M. Pospelov, Astropart. Phys. 16, 451 (2002). https://doi.org/10.1016/S0927-6505(01)00121-9

    Article  ADS  Google Scholar 

  20. X. Chu, T. Hambye, M.H.G. Tytgat, JCAP 1205, 034 (2012). https://doi.org/10.1088/1475-7516/2012/05/034

    Article  ADS  Google Scholar 

  21. P. Gondolo, J. Silk, Phys. Rev. Lett. 83, 1719 (1999). https://doi.org/10.1103/PhysRevLett.83.1719

    Article  ADS  Google Scholar 

  22. P. Ullio, H. Zhao, M. Kamionkowski, Phys. Rev. D 64, 043504 (2001). https://doi.org/10.1103/PhysRevD.64.043504

    Article  ADS  Google Scholar 

  23. B.D. Fields, S.L. Shapiro, J. Shelton, Phys. Rev. Lett. 113, 151302 (2014). https://doi.org/10.1103/PhysRevLett.113.151302

    Article  ADS  Google Scholar 

  24. O.Y. Gnedin, J.R. Primack, Phys. Rev. Lett. 93, 061302 (2004). https://doi.org/10.1103/PhysRevLett.93.061302

    Article  ADS  Google Scholar 

  25. M.A. Amin, T. Wizansky, Phys. Rev. D 77, 123510 (2008). https://doi.org/10.1103/PhysRevD.77.123510

    Article  ADS  Google Scholar 

  26. M. Cannoni, M.E. Gomez, M.A. Perez-Garcia, J.D. Vergados, Phys. Rev. D 85, 115015 (2012). https://doi.org/10.1103/PhysRevD.85.115015

    Article  ADS  Google Scholar 

  27. C. Arina, T. Bringmann, J. Silk, M. Vollmann, Phys. Rev. D 90(8), 083506 (2014). https://doi.org/10.1103/PhysRevD.90.083506

    Article  ADS  Google Scholar 

  28. J. Shelton, S.L. Shapiro, B.D. Fields, Phys. Rev. Lett. 115(23), 231302 (2015). https://doi.org/10.1103/PhysRevLett.115.231302

    Article  ADS  Google Scholar 

  29. S.L. Shapiro, V. Paschalidis, Phys. Rev. D 89(2), 023506 (2014). https://doi.org/10.1103/PhysRevD.89.023506

    Article  ADS  Google Scholar 

  30. D. Merritt, Phys. Rev. Lett. 92, 201304 (2004). https://doi.org/10.1103/PhysRevLett.92.201304

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Many thanks to the organizers for putting together this stimulating workshop, and to the Simons Foundation for making it possible. Thanks also to my collaborators on the work highlighted here: J. Evans, B. Fields, C. Gaidau, S. Gori, and S. Shapiro. This work is supported in part by DOE Early Career award DE-SC0017840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie Shelton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shelton, J. (2019). Some Minimal Cosmologies for Dark Sectors. In: Essig, R., Feng, J., Zurek, K. (eds) Illuminating Dark Matter. Astrophysics and Space Science Proceedings, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-31593-1_17

Download citation

Publish with us

Policies and ethics