Skip to main content

Automatic Design of Microfluidic Devices: An Overview of Platforms and Corresponding Design Tasks

  • Chapter
  • First Online:
  • 520 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 611))

Abstract

This overview chapter summarizes the content of a tutorial given at the 2018 edition of the Forum on Specification and Design Languages. The aim of the tutorial was to introduce the technology of microfluidic devices, which gained significant interest in the recent past, as well as corresponding design challenges to a community focused on design automation and corresponding specification/design languages. By this, the overview presents a starting point for researchers and engineers interested in getting involved in this area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that a bypass channel [8] connects the endpoints of the two successor channels. This bypass cannot be entered by any droplet and is used to make the droplet routing only dependent on the resistances of the successors (and not the entire network).

References

  1. Alistar, M., Pop, P., & Madsen, J. (2013). Operation placement for application-specific digital microfluidic biochips. In 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  2. Amin, N., Thies, W., & Amarasinghe, S. P. (2009). Computer-aided design for microfluidic chips based on multilayer soft lithography. In Proceedings of the International Conference on Computer Design (pp. 2–9)

    Google Scholar 

  3. Bhattacharjee, S., Wille, R., Huang, J. D., & Bhattacharya, B. B. (2018). Storage-aware sample preparation using flow-based microfluidic labs-on-chip. In Design, Automation and Test in Europe (pp. 1399–1404).

    Google Scholar 

  4. Biral, A., & Zanella, A. (2013). Introducing purely hydrodynamic networking functionalities into microfluidic systems. Journal of Nano Communication Networks, 4(4), 205–215.

    Article  Google Scholar 

  5. Biral, A., Zordan, D., & Zanella, A. (2015). Modeling, simulation and experimentation of droplet-based microfluidic networks. IEEE Transactions on Molecular, Biological, and Multi-scale Communications, 1(2), 122–134.

    Article  Google Scholar 

  6. Castorina, G., Reno, M., Galluccio, L., & Lombardo, A. (2017). Microfluidic networking: Switching multidroplet frames to improve signaling overhead. Journal of Nano Communication Networks, 14, 48–59.

    Article  Google Scholar 

  7. Chen, Y. H., Hsu, C. L., Tsai, L. C., Huang, T. W., & Ho, T. Y. (2013). A reliability-oriented placement algorithm for reconfigurable digital microfluidic biochips using 3-D deferred decision making technique. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1151–1162.

    Article  Google Scholar 

  8. Cristobal, G., Benoit, J. P., Joanicot, M., & Ajdari, A. (2006). Microfluidic bypass for efficient passive regulation of droplet traffic at a junction. Applied Physics Letters, 89(3), 34104–34104.

    Article  Google Scholar 

  9. De Leo, E., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M. (2013). Communications and switching in microfluidic systems: Pure hydrodynamic control for networking Labs-on-a-Chip. IEEE Transactions on Communications, 61(11), 4663–4677.

    Article  Google Scholar 

  10. De Leo, E., Galluccio, L., Lombardo, A., & Morabito, G. (2012). Networked labs-on-a-chip (NLoC): Introducing networking technologies in microfluidic systems. Journal of Nano Communication Networks, 3(4), 217–228.

    Article  Google Scholar 

  11. Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2013). Microfluidic networks: Design and simulation of pure hydrodynamic switching and medium access control. Journal of Nano Communication Networks, 4(4), 164–171.

    Article  Google Scholar 

  12. Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2014). On the assessment of microfluidic switching capabilities in NLoC networks. In International Conference on Nanoscale Computing and Communication (p. 19).

    Google Scholar 

  13. Donvito, L., Galluccio, L., Lombardo, A., & Morabito, G. (2015). μ-NET: A network for molecular biology applications in microfluidic chips. IEEE/ACM Transactions on Networking, 24(4), 2525–2538.

    Article  Google Scholar 

  14. Fidalgo, L. M., & Maerkl, S. J. (2011). A software-programmable microfluidic device for automated biology. Lab on a Chip, 11, 1612–1619.

    Article  Google Scholar 

  15. Fuerstman, M. J., Lai, A., Thurlow, M. E., Shevkoplyas, S. S., Stone, H. A., & Whitesides, G. M. (2007). The pressure drop along rectangular microchannels containing bubbles. Journal on Lab on a Chip, 7(11), 1479–1489.

    Article  Google Scholar 

  16. Glawdel, T., Elbuken, C., & Ren, C. (2011). Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. Journal on Lab on a Chip, 11(22), 3774–3784.

    Article  Google Scholar 

  17. Glawdel, T., & Ren, C. L. (2012). Global network design for robust operation of microfluidic droplet generators with pressure-driven flow. Journal of Microfluidics and Nanofluidics, 13(3), 469–480.

    Article  Google Scholar 

  18. Gleichmann, N., Malsch, D., Horbert, P., & Henkel, T. (2015). Toward microfluidic design automation: A new system simulation toolkit for the in silico evaluation of droplet-based lab-on-a-chip systems. Journal of Microfluidics and Nanofluidics, 18(5–6), 1095–1105.

    Article  Google Scholar 

  19. Grimmer, A., Chen, X., Hamidovic, M., Haselmayr, W., Ren, C. L., & Wille, R. (2018). Simulation before fabrication: A case study on the utilization of simulators for the design of droplet microfluidic networks. RSC Advances, 8(60), 34733–34742.

    Article  Google Scholar 

  20. Grimmer, A., Hamidovic, M., Haselmayr, W., & Wille, R. (2018). Advanced simulation of droplet microfluidics. Journal on Emerging Technologies in Computing Systems, 15(3), Article no. 26.

    Google Scholar 

  21. Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). A discrete model for Networked Labs-on-Chips: Linking the physical world to design automation. In Design Automation Conference (pp. 50:1–50:6).

    Google Scholar 

  22. Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2017). Verification of Networked Labs-on-Chip architectures. In Design, Automation and Test in Europe (pp. 1679–1684).

    Google Scholar 

  23. Grimmer, A., Haselmayr, W., Springer, A., & Wille, R. (2018). Design of application-specific architectures for Networked Labs-on-Chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(1), 193–202.

    Article  Google Scholar 

  24. Grimmer, A., Haselmayr, W., & Wille, R. (2018). Automated dimensioning of networked labs-on-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7), 1216–1225.

    Article  Google Scholar 

  25. Grimmer, A., Klepic, B., Ho, T. Y., & Wille, R. (2018). Sound valve-control for programmable microfluidic devices. In Proceedings of the Asia and South Pacific Design and Automation Conference.

    Google Scholar 

  26. Grimmer, A., Wang, Q., Yao, H., Ho, T. Y., & Wille, R. (2017). Close-to-optimal placement and routing for continuous-flow microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 530–535).

    Google Scholar 

  27. Grissom, D., & Brisk, P. (2012). Path scheduling on digital microfluidic biochips. In Proceedings of the 49th Annual Design Automation Conference (pp. 26–35). New York: ACM.

    Google Scholar 

  28. Guttenberg, Z., Müller, H., Habermüller, H., Geisbauer, A., Pipper, J., Felbel, J., et al. (2005). Planar chip device for PCR and hybridization with surface acoustic wave pump. Journal on Lab on a Chip, 5(3), 308–317.

    Article  Google Scholar 

  29. Haeberle, S., & Zengerle, R. (2007). Microfluidic platforms for Lab-on-a-Chip applications. Journal on Lab on a Chip, 7, 1094–1110.

    Article  Google Scholar 

  30. Haselmayr, W., Biral, A., Grimmer, A., Zanella, A., Springer, A., & Wille, R. (2017). Addressing multiple nodes in Networked Labs-on-Chips without payload re-injection. In International Conference on Communications.

    Google Scholar 

  31. Haselmayr, W., Hamidović, M., Grimmer, A., & Wille, R. (2018). Fast and flexible drug screening using a pure hydrodynamic droplet control. In European Conference on Microfluidics.

    Google Scholar 

  32. He, M., Edgar, J. S., Jeffries, G. D., Lorenz, R. M., Shelby, J. P., & Chiu, D. T. (2005). Selective encapsulation of single cells and subcellular organelles into picoliter-and femtoliter-volume droplets. Journal of Analytical Chemistry, 77(6), 1539–1544.

    Article  Google Scholar 

  33. Hu, K., Bhattacharya, B. B., & Chakrabarty, K. (2015). Fault diagnosis for flow-based microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 1–6).

    Google Scholar 

  34. Hu, K., Dinh, T., Ho, T. Y., & Chakrabarty, K. (2016). Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(1), 55–68.

    Article  Google Scholar 

  35. Hu, K., Dinh, T. A., Ho, T. Y., & Chakrabarty, K. (2017). Control-layer routing and control-pin minimization for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(1), 55–68.

    Article  Google Scholar 

  36. Hu, K., Ho, T. Y., & Chakrabarty, K. (2013). Testing of flow-based microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 1–6).

    Google Scholar 

  37. Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Test generation and design-for-testability for flow-based mVLSI microfluidic biochips. In Proceedings of the VLSI Test Symposium (pp. 97–102).

    Google Scholar 

  38. Hu, K., Ho, T. Y., & Chakrabarty, K. (2014). Wash optimization for cross-contamination removal in flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 244–249).

    Google Scholar 

  39. Hu, K., Ho, T. Y., & Chakrabarty, K. (2016). Wash optimization and analysis for cross-contamination removal under physical constraints in flow-based microfluidic biochips. IEEE Transactions on CAD of Integrated Circuits and Systems, 35(4), 559–572.

    Article  Google Scholar 

  40. Hu, K., Yu, F., Ho, T. Y., & Chakrabarty, K. (2014). Testing of flow-based microfluidic biochips: Fault modeling, test generation, and experimental demonstration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(10), 1463–1475.

    Article  Google Scholar 

  41. Huang, T. W., & Ho, T. Y. (2009). A fast routability- and performance-driven droplet routing algorithm for digital microfluidic biochips. In International Conference on Computer Design (pp. 445–450). Piscataway: IEEE.

    Google Scholar 

  42. Hung, L. H., Choi, K. M., Tseng, W. Y., Tan, Y. C., Shea, K. J., & Lee, A. P. (2006). Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Journal on Lab on a Chip, 6(2), 174–178.

    Article  Google Scholar 

  43. Keszocze, O., Ibrahim, M., Wille, R., Chakrabarty, K., & Drechsler, R. (2018). Exact synthesis of biomolecular protocols for multiple sample pathways on digital microfluidic biochips. In Conference on VLSI Design (pp. 121–126).

    Google Scholar 

  44. Keszocze, O., Li, Z., Grimmer, A., Wille, R., Chakrabarty, K., & Drechsler, R. (2017). Exact routing for micro-electrode-dot-array digital microfluidic biochips. In Asia and South Pacific Design Automation Conference.

    Google Scholar 

  45. Keszocze, O., Wille, R., Chakrabarty, K., & Drechsler, R. (2015). A general and exact routing methodology for digital microfluidic biochips. In International Conference on Computer-Aided Design (pp. 874–881).

    Google Scholar 

  46. Keszocze, O., Wille, R., & Drechsler, R. (2014). Exact routing for digital microfluidic biochips with temporary blockages. In International Conference on Computer-Aided Design (pp. 405–410).

    Google Scholar 

  47. Keszocze, O., Wille, R., Ho, T. Y., & Drechsler, R. (2014). Exact one-pass synthesis of digital microfluidic biochips. In Design Automation Conference (pp. 1–6).

    Google Scholar 

  48. Köhler, J., Henkel, T., Grodrian, A., Kirner, T., Roth, M., Martin, K., et al. (2004). Digital reaction technology by micro segmented flow-components, concepts and applications. Chemical Engineering Journal, 101(1), 201–216.

    Article  Google Scholar 

  49. Lai, G. R., Lin, C. Y., & Ho, T. Y. (2018). Pump-aware flow routing algorithm for programmable microfluidic devices. In Proceedings of the Design, Automation, and Test Europe Conference.

    Google Scholar 

  50. Lai, K., Yang, Y.-T., Lee, C.-Y. (2015). An intelligent digital microfluidic processor for biomedical detection. Journal of Signal Processing Systems, 78, 85–93.

    Article  Google Scholar 

  51. Leo, E. D., Donvito, L., Galluccio, L., Lombardo, A., Morabito, G., & Zanoli, L. M. (2013). Design and assessment of a pure hydrodynamic microfluidic switch. In International Conference on Communications (pp. 3165–3169).

    Google Scholar 

  52. Li, Z., Lai, K. Y. T., Yu, P. H., Ho, T. Y., Chakrabarty, K., & Lee, C. Y. (2016). High-level synthesis for micro-electrode-dot-array digital microfluidic biochips. In Design Automation Conference (p. 146).

    Google Scholar 

  53. Link, D., Anna, S. L., Weitz, D., & Stone, H. (2004). Geometrically mediated breakup of drops in microfluidic devices. Physical Review Letters, 92(5), 054503.

    Article  Google Scholar 

  54. Liu, C., Li, B., Bhattacharya, B. B., Chakrabarty, K., Ho, T. Y., & Schlichtmann, U. (2017). Testing microfluidic fully programmable valve arrays (FPVAs). In Proceedings of the Design, Automation, and Test Europe Conference (pp. 91–96).

    Google Scholar 

  55. Liu, C., Li, B., Ho, T. Y., Chakrabarty, K., & Schlichtmann, U. (2018). Design-for-testability for continuous-flow microfluidic biochips. In Proceedings of the Design Automation Conference.

    Google Scholar 

  56. Liu, C., Li, B., Yao, H., Pop, P., Ho, T. Y., & Schlichtmann, U. (2017). Transport or store? Synthesizing flow-based microfluidic biochips using distributed channel storage. In Proceedings of the Design Automation Conference (pp. 49:1–49:6).

    Google Scholar 

  57. Manz, A., Graber, N., & Widmer, H. M. (1990). Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1(1–6), 244–248.

    Article  Google Scholar 

  58. Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. (2010). Microfluidic Lab-on-a-Chip platforms: Requirements, characteristics and applications. Journal of Chemical Society Reviews, 39(3), 1153–1182.

    Article  Google Scholar 

  59. Melin, J., & Quake, S. (2007). Microfluidic large-scale integration: the evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure, 36, 213–231.

    Article  Google Scholar 

  60. Minhass, W. H., Pop, P., Madsen, J., & Blaga, F. S. (2012). Architectural synthesis of flow-based microfluidic large-scale integration biochips. In Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (pp. 181–190).

    Google Scholar 

  61. Minhass, W. H., Pop, P., Madsen, J., & Ho, T. Y. (2013). Control synthesis for the flow-based microfluidic large-scale integration biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 205–212).

    Google Scholar 

  62. Pollack, M. G., Shenderov, A. D., & Fair, R. B. (2002). Electrowetting-based actuation of droplets for integrated microfluidics. Journal on Lab on a Chip, 2(2), 96–101.

    Article  Google Scholar 

  63. Su, F., & Chakrabarty, K. (2006). Module placement for fault-tolerant microfluidics-based biochips. ACM TODAES, 11(3), 682–710.

    Article  Google Scholar 

  64. Su, F., & Chakrabarty, K. (2008). High-level synthesis of digital microfluidic biochips. ACM JETC, 3(4), 1:1–1:32. https://doi.org/10.1145/1324177.1324178.

    Article  Google Scholar 

  65. Su, F., Hwang, W., & Chakrabarty, K. (2006). Droplet routing in the synthesis of digital microfluidic biochips. In Design, Automation and Test in Europe (Vol. 1, pp. 1–6). Piscataway: IEEE.

    Google Scholar 

  66. Tan, Y. C., Fisher, J. S., Lee, A. I., Cristini, V., & Lee, A. P. (2004). Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Journal on Lab on a Chip, 4(4), 292–298.

    Article  Google Scholar 

  67. Tan, Y. C., Hettiarachchi, K., Siu, M., Pan, Y. R., & Lee, A. P. (2006). Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. Journal of the American Chemical Society, 128(17), 5656–5658.

    Article  Google Scholar 

  68. Tan, Y. C., Ho, Y. L., & Lee, A. P. (2007). Droplet coalescence by geometrically mediated flow in microfluidic channels. Journal of Microfluidics and Nanofluidics, 3(4), 495–499.

    Article  Google Scholar 

  69. Tan, Y. C., Ho, Y. L., & Lee, A. (2008). Microfluidic sorting of droplets by size. Journal of Microfluidics and Nanofluidics, 4(4), 343–348.

    Article  Google Scholar 

  70. Thorsen, T., Maerkl, S. J., & Quake, S. R. (2002). Microfluidic large-scale integration. Science, 298(5593), 580–584.

    Article  Google Scholar 

  71. Tseng, K. H., You, S. C., Liou, J. Y., & Ho, T. Y. (2013). A top-down synthesis methodology for flow-based microfluidic biochips considering valve-switching minimization. In Proceedings of the International symposium on Physical Design (pp. 123–129).

    Google Scholar 

  72. Tseng, T. M., Li, B., Ho, T. Y., & Schlichtmann, U. (2015). Reliability-aware synthesis for flow-based microfluidic biochips by dynamic-device mapping. In Proceedings of the Design Automation Conference (pp. 141:1–141:6).

    Google Scholar 

  73. Tseng, T. M., Li, B., Li, M., Ho, T. Y., & Schlichtmann, U. (2016). Reliability-aware synthesis with dynamic device mapping and fluid routing for flow-based microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(12), 1981–1994.

    Article  Google Scholar 

  74. Tseng, T. M., Li, B., Schlichtmann, U., & Ho, T. Y. (2015). Storage and caching: Synthesis of flow-based microfluidic biochips. IEEE Design and Test, 32(6), 69–75.

    Article  Google Scholar 

  75. Tseng, T. M., Li, M., Freitas, D. N., McAuley, T., Li, B., Ho, T. Y., et al. (2018). Columba 2.0: A co-layout synthesis tool for continuous-flow microfluidic biochips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 37(8), 1588–1601.

    Article  Google Scholar 

  76. Tseng, T. M., Li, M., Li, B., Ho, T. Y., & Schlichtmann, U. (2016). Columba: Co-layout synthesis for continuous-flow microfluidic biochips. In Proceedings of the Design Automation Conference (pp. 147:1–147:6).

    Google Scholar 

  77. Verpoorte, E., & Rooij, N. F. D. (2003). Microfluidics meets MEMS. Proceedings of the IEEE, 91(6), 930–953.

    Article  Google Scholar 

  78. Wang, G., Teng, D., & Fan, S. K.: Digital microfluidic operations on micro-electrode dot array architecture. IET Nanobiotechnology, 5(4), 152–160 (2011).

    Article  Google Scholar 

  79. Wang, G., Teng, D., Lai, Y. T., Lu, Y. W., Ho, Y., & Lee, C. Y. (2013). Field-programmable lab-on-a-chip based on microelectrode dot array architecture. IET Nanobiotechnology, 8, 163–171.

    Article  Google Scholar 

  80. Wang, Q., Ru, Y., Yao, H., Ho, T. Y., & Cai, Y. (2016). Sequence-pair-based placement and routing for flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 587–592).

    Google Scholar 

  81. Wang, Q., Xu, Y., Zuo, S., Yao, H., Ho, T. Y., Li, B., et al. (2017). Pressure-aware control layer optimization for flow-based microfluidic biochips. IEEE Transactions on Biomedical Circuits and Systems, 11(6), 1488–1499.

    Article  Google Scholar 

  82. Wang, Q., Zuo, S., Yao, H., Ho, T. Y., Li, B., Schlichtmann, U., et al. (2017). Hamming-distance-based valve-switching optimization for control-layer multiplexing in flow-based microfluidic biochips. In Proceedings of the Asia and South Pacific Design and Automation Conference (pp. 524–529).

    Google Scholar 

  83. Wang, W., Yang, C., & Li, C. M. (2009). On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Journal on Lab on a Chip, 9(11), 1504–1506.

    Article  Google Scholar 

  84. Wille, R., Keszocze, O., Drechsler, R., Boehnisch, T., & Kroker, A. (2015). Scalable one-pass synthesis for digital microfluidic biochips. Journal on Design and Test, 32(6), 41–50.

    Article  Google Scholar 

  85. Xu, T., & Chakrabarty, K. (2007). Integrated droplet routing in the synthesis of microfluidic biochips. In Design Automation Conference (pp. 948–953).

    Google Scholar 

  86. Yao, H., Ho, T. Y., & Cai, Y. (2015). PACOR: Practical control-layer routing flow with length-matching constraint for flow-based microfluidic biochips. In Proceedings of the Design Automation Conference (pp. 142:1–142:6).

    Google Scholar 

  87. Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). BioRoute: A network-flow based routing algorithm for digital microfluidic biochips. In International Conference on CAD (pp. 752–757). Piscataway: IEEE Press.

    Google Scholar 

  88. Yuh, P. H., Yang, C. L., & Chang, Y. W. (2007). Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM JETC, 3(3), 13.

    Article  Google Scholar 

  89. Zheng, B., Roach, L. S., & Ismagilov, R. F. (2003). Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. Journal of the American Chemical Society, 125(37), 11170–11171.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank all co-authors and collaborators who worked with us in the past in this exciting area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Wille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wille, R., Li, B., Drechsler, R., Schlichtmann, U. (2020). Automatic Design of Microfluidic Devices: An Overview of Platforms and Corresponding Design Tasks. In: Kazmierski, T., Steinhorst, S., Große, D. (eds) Languages, Design Methods, and Tools for Electronic System Design. Lecture Notes in Electrical Engineering, vol 611. Springer, Cham. https://doi.org/10.1007/978-3-030-31585-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31585-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31584-9

  • Online ISBN: 978-3-030-31585-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics