Skip to main content

Deposition and Compositional Analysis of Garnet Solid Electrolyte Thin Films

  • Chapter
  • First Online:
Book cover Solid Electrolytes for Advanced Applications
  • 1141 Accesses

Abstract

While the general working principle of all-solid-state batteries on a laboratory scale has nowadays already been frequently proven, one major improvement opportunity in optimizing the energy density still lies in the drastic reduction in the electrolyte thickness down to the range of a few micrometers. In this way, the overall inactive mass of the cell will be reduced and a potentially lower Li-ion conductivity compared to conventional liquid electrolytes can be counterbalanced. The focus of this chapter is on the thin film deposition of garnet structured Li-ion conductors. In the first part, different deposition approaches by wet chemical routes and gas-phase techniques are discussed. In the second part, an overview of the compositional analysis of Li-containing thin films, which is an elaborate and important part of the target-oriented development of garnet-structured thin films, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3(4):267–278. https://doi.org/10.1038/s41560-018-0107-2

    Article  CAS  Google Scholar 

  2. Yu X, Bates JB, Jellison GE, Hart FX (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532. https://doi.org/10.1149/1.1837443

    Article  CAS  Google Scholar 

  3. Deng Y-F, Zhao S-X, Xu Y-H, Nan C-W (2014) Effect of the morphology of Li–La–Zr–O solid electrolyte coating on the electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 cathode materials. J Mater Chem A 2(44):18889–18897. https://doi.org/10.1039/c4ta03772c

    Article  CAS  Google Scholar 

  4. Van Gestel T, Sebold D, Buchkremer HP (2015) Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs. J Eur Ceram Soc 35(5):1505–1515. https://doi.org/10.1016/j.jeurceramsoc.2014.11.017

    Article  CAS  Google Scholar 

  5. Bram M, Dornseiffer J, Hoffmann J, Gestel T, Meulenberg Wilhelm A, Stöver D, Bhandarkar S (2015) Inkjet printing of microporous silica gas separation membranes. J Am Ceram Soc 98(8):2388–2394. https://doi.org/10.1111/jace.13657

    Article  CAS  Google Scholar 

  6. Teucher G, Van Gestel T, Krott M, Gehrke H-G, Eichel R-A, Uhlenbruck S (2016) Processing of Al-doped ZnO protective thin films on aluminum current collectors for lithium ion batteries. Thin Solid Films 619:302–307. https://doi.org/10.1016/j.tsf.2016.10.047

    Article  CAS  Google Scholar 

  7. Chen R-J, Huang M, Huang W-Z, Shen Y, Lin Y-H, Nan C-W (2014) Sol–gel derived Li–La–Zr–O thin films as solid electrolytes for lithium-ion batteries. J Mater Chem A 2(33):13277–13282. https://doi.org/10.1039/C4TA02289K

    Article  CAS  Google Scholar 

  8. Tadanaga K, Egawa H, Hayashi A, Tatsumisago M, Mosa J, Aparicio M, Duran A (2015) Preparation of lithium ion conductive Al-doped Li7La3Zr2O12 thin films by a sol–gel process. J Power Sources 273:844–847. https://doi.org/10.1016/j.jpowsour.2014.09.164

    Article  CAS  Google Scholar 

  9. Bitzer M, Van Gestel T, Uhlenbruck S, Buchkremer HP (2016) Sol-gel synthesis of thin solid Li7La3Zr2O12 electrolyte films for Li-ion batteries. Thin Solid Films 615:128–134. https://doi.org/10.1016/j.tsf.2016.07.010

    Article  CAS  Google Scholar 

  10. Zarabian M, Bartolini M, Pereira-Almao P, Thangadurai V (2017) X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li–La–Zr–O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries. J Electrochem Soc 164(6):A1133–A1139. https://doi.org/10.1149/2.0621706jes

    Article  CAS  Google Scholar 

  11. Uhlenbruck S, Dornseiffer J, Lobe S, Dellen C, Tsai C-L, Gotzen B, Sebold D, Finsterbusch M, Guillon O (2017) Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. J Electroceram 38(2):197–206. https://doi.org/10.1007/s10832-016-0062-x

    Article  CAS  Google Scholar 

  12. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411. https://doi.org/10.1016/j.pmatsci.2017.04.007

    Article  CAS  Google Scholar 

  13. Mücke R, Menzler Norbert H, Buchkremer Hans P, Stöver D (2009) Cofiring of thin zirconia films during SOFC manufacturing. J Am Ceram Soc 92(s1):S95–S102. https://doi.org/10.1111/j.1551-2916.2008.02707.x

    Article  CAS  Google Scholar 

  14. Keuter T, Mauer G, Vondahlen F, Iskandar R, Menzler NH, Vaßen R (2016) Atomic-layer-controlled deposition of TEMAZ/O2–ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells. Surf Coat Technol 288:211–220. https://doi.org/10.1016/j.surfcoat.2016.01.026

    Article  CAS  Google Scholar 

  15. Nédélec R, Uhlenbruck S, Sebold D, Haanappel VAC, Buchkremer HP, Stöver D (2012) Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering. J Power Sources 205:157–163. https://doi.org/10.1016/j.jpowsour.2012.01.054

    Article  CAS  Google Scholar 

  16. Striebel KA, Deng CZ, Wen SJ, Cairns EJ (1996) Electrochemical behavior of LiMn2O4 and LiCoO2 thin films produced with pulsed laser deposition. J Electrochem Soc 143(6):1821–1827

    Article  CAS  Google Scholar 

  17. Zhao S, Fu Z, Qin Q (2002) A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition. Thin Solid Films 415(1):108–113. https://doi.org/10.1016/S0040-6090(02)00543-6

    Article  CAS  Google Scholar 

  18. Tan JJ, Tiwari A (2012) Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. ECS Solid State Lett 1(6):Q57–Q60. https://doi.org/10.1149/2.013206ssl

    Article  CAS  Google Scholar 

  19. Kim S, Hirayama M, Taminato S, Kanno R (2013) Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. Dalton Trans 42(36):13112–13117. https://doi.org/10.1039/c3dt51795k

    Article  CAS  PubMed  Google Scholar 

  20. Rawlence M, Garbayo I, Buecheler S, Rupp JLM (2016) On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films. Nanoscale 8(31):14746–14753. https://doi.org/10.1039/C6NR04162K

    Article  CAS  PubMed  Google Scholar 

  21. Park JS, Cheng L, Zorba V, Mehta A, Cabana J, Chen G, Doeff MM, Richardson TJ, Park JH, Son J-W, Hong W-S (2015) Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films. Thin Solid Films 576:55–60. https://doi.org/10.1016/j.tsf.2014.11.019

    Article  CAS  Google Scholar 

  22. Saccoccio M, Yu J, Lu Z, Kwok SCT, Wang J, Yeung KK, Yuen MMF, Ciucci F (2017) Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes. J Power Sources 365:43–52. https://doi.org/10.1016/j.jpowsour.2017.08.020

    Article  CAS  Google Scholar 

  23. Park HY, Lee SR, Lee YJ, Cho BW, Cho WI (2005) Bias sputtering and characterization of LiCoO2 thin film cathodes for thin film microbattery. Mater Chem Phys 93(1):70–78. https://doi.org/10.1016/j.matchemphys.2005.02.024

    Article  CAS  Google Scholar 

  24. Reinacher J, Berendts S, Janek J (2014) Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ion 258:1–7. https://doi.org/10.1016/j.ssi.2014.01.046

    Article  CAS  Google Scholar 

  25. Kalita DJ, Lee SH, Lee KS, Ko DH, Yoon YS (2012) Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries. Solid State Ion 229:14–19. https://doi.org/10.1016/j.ssi.2012.09.011

    Article  CAS  Google Scholar 

  26. Lobe S, Dellen C, Finsterbusch M, Gehrke HG, Sebold D, Tsai CL, Uhlenbruck S, Guillon O (2016) Radio frequency magnetron sputtering of Li7La3Zr2O12 thin films for solid-state batteries. J Power Sources 307:684–689. https://doi.org/10.1016/j.jpowsour.2015.12.054

    Article  CAS  Google Scholar 

  27. Katsui H, Goto T (2015) Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition. Thin Solid Films 584:130–134. https://doi.org/10.1016/j.tsf.2014.11.094

    Article  CAS  Google Scholar 

  28. Kazyak E, Chen K-H, Wood KN, Davis AL, Thompson T, Bielinski AR, Sanchez AJ, Wang X, Wang C, Sakamoto J, Dasgupta NP (2017) Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chem Mater 29(8):3785–3792. https://doi.org/10.1021/acs.chemmater.7b00944

    Article  CAS  Google Scholar 

  29. Loho C, Djenadic R, Bruns M, Clemens O, Hahn H (2017) Garnet-type Li7La3Zr2O12 solid electrolyte thin films grown by CO2-laser assisted CVD for all-solid-state batteries. J Electrochem Soc 164(1):A6131–A6139. https://doi.org/10.1149/2.0201701jes

    Article  CAS  Google Scholar 

  30. Loho C, Djenadic R, Mundt P, Clemens O, Hahn H (2017) On processing-structure-property relations and high ionic conductivity in garnet-type Li5La3Ta2O12 solid electrolyte thin films grown by CO2-laser assisted CVD. Solid State Ion 313:32–44. https://doi.org/10.1016/j.ssi.2017.11.005

    Article  CAS  Google Scholar 

  31. Burgess S, Sagar J, Holland J, Li X, Bauer F (2017) Ultra-low kV EDS—a new approach to improved spatial resolution, surface sensitivity, and light element compositional imaging and analysis in the SEM. Microscopy Today 25(2):20–29. https://doi.org/10.1017/S1551929517000013

    Article  CAS  Google Scholar 

  32. Uhart A, Ledeuil JB, Pecquenard B, Le Cras F, Proust M, Martinez H (2017) Nanoscale chemical characterization of solid-state microbattery stacks by means of auger spectroscopy and ion-milling cross section preparation. ACS Appl Mater Interfaces 9(38):33238–33249. https://doi.org/10.1021/acsami.7b07270

    Article  CAS  PubMed  Google Scholar 

  33. Azmi R, Trouillet V, Strafela M, Ulrich S, Ehrenberg H, Bruns M (2017) Surface analytical approaches to reliably characterize lithium ion battery electrodes. Surf Interface Anal 50(1):43–51. https://doi.org/10.1002/sia.6330

    Article  CAS  Google Scholar 

  34. Garbayo I, Struzik M, Bowman William J, Pfenninger R, Stilp E, Rupp Jennifer LM (2018) Glass‐type polyamorphism in Li‐garnet thin film solid state battery conductors. Adv Energy Mater:1702265. https://doi.org/10.1002/aenm.201702265

    Article  Google Scholar 

  35. Uhlenbruck S, Dellen C, Möller S, Lobe S, Tsai C-L, Finsterbusch M, Bram M, Guillon O (2018) Reactions of garnet-based solid-state lithium electrolytes with water—a depth-resolved study. Solid State Ion 320:259–265. https://doi.org/10.1016/j.ssi.2018.03.004

    Article  CAS  Google Scholar 

  36. Xia W, Xu B, Duan H, Tang X, Guo Y, Kang H, Li H, Liu H (2017) Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J Am Ceram Soc 100(7):2832–2839. https://doi.org/10.1111/jace.14865

    Article  CAS  Google Scholar 

  37. Downing RG, Lamaze GP, Langland JK, Hwang ST (1993) Neutron depth profiling: overview and description of NIST facilities. J Res Nat Inst Stand Technol 98(1):109–126. https://doi.org/10.6028/jres.098.008

    Article  CAS  Google Scholar 

  38. Nagpure SC, Downing RG, Bhushan B, Babu SS, Cao L (2011) Neutron depth profiling technique for studying aging in Li-ion batteries. Electrochim Acta 56(13):4735–4743. https://doi.org/10.1016/j.electacta.2011.02.037

    Article  CAS  Google Scholar 

  39. Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L (2017) In situ neutron depth profiling of lithium metal–garnet interfaces for solid state batteries. J Am Chem Soc 139(40):14257–14264. https://doi.org/10.1021/jacs.7b07904

    Article  CAS  PubMed  Google Scholar 

  40. Oudenhoven JFM, Labohm F, Mulder M, Niessen RAH, Mulder FM, Notten PHL (2011) in situ neutron depth profiling: a powerful method to probe lithium transport in micro-batteries. Adv Mater 23(35):4103–4106. https://doi.org/10.1002/adma.201101819

    Article  CAS  PubMed  Google Scholar 

  41. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778–7781. https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  42. Buannic L, Orayech B, López Del Amo J-M, Carrasco J, Katcho NA, Aguesse F, Manalastas W, Zhang W, Kilner J, Llordés A (2017) Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater 29(4):1769–1778. https://doi.org/10.1021/acs.chemmater.6b05369

    Article  CAS  Google Scholar 

  43. Tenhaeff WE, Rangasamy E, Wang Y, Sokolov AP, Wolfenstine J, Sakamoto J, Dudney NJ (2014) Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes. ChemElectroChem 1(2):375–378. https://doi.org/10.1002/celc.201300022

    Article  CAS  Google Scholar 

  44. Miara L, Windmüller A, Tsai C-L, Richards WD, Ma Q, Uhlenbruck S, Guillon O, Ceder G (2016) About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl Mater Interfaces 8(40):26842–26850. https://doi.org/10.1021/acsami.6b09059

    Article  CAS  PubMed  Google Scholar 

  45. Thangadurai V, Weppner W (2005) Investigations on electrical conductivity and chemical compatibility between fast lithium ion conducting garnet-like Li6BaLa2Ta2O12 and lithium battery cathodes. J Power Sources 142(1–2):339–344. https://doi.org/10.1016/j.jpowsour.2004.11.001

    Article  CAS  Google Scholar 

  46. Ren Y, Liu T, Shen Y, Lin Y, Nan C-W (2016) Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J Mater 2(3):256–264. https://doi.org/10.1016/j.jmat.2016.04.003

    Article  Google Scholar 

  47. Tintignac S, Baddour-Hadjean R, Pereira-Ramos J-P, Salot R (2012) High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect. Electrochim Acta 60:121–129. https://doi.org/10.1016/j.electacta.2011.11.033

    Article  CAS  Google Scholar 

  48. Neudecker BJ, Dudney NJ, Bates JB (2000) “Lithium-free” thin-film battery with in situ plated li anode. J Electrochem Soc 147(2):517–523

    Article  CAS  Google Scholar 

  49. Hubaud AA, Schroeder DJ, Ingram BJ, Okasinski JS, Vaughey JT (2015) Thermal expansion in the garnet-type solid electrolyte (Li7−xAlx/3)La3Zr2O12 as a function of Al content. J Alloy Compd 644:804–807. https://doi.org/10.1016/j.jallcom.2015.05.067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Lobe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lobe, S., Dellen, C. (2019). Deposition and Compositional Analysis of Garnet Solid Electrolyte Thin Films. In: Murugan, R., Weppner, W. (eds) Solid Electrolytes for Advanced Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31581-8_6

Download citation

Publish with us

Policies and ethics