Skip to main content

Sintering Additives for Garnet-Type Electrolytes

  • Chapter
  • First Online:
Solid Electrolytes for Advanced Applications

Abstract

Producing densified garnet-type solid electrolytes by lowering sintering temperature is an important target, which can prevent not only the lithium loss (controlling chemical stoichiometry) but also make it more compatible with cathode electrode materials. In this chapter, the use of sintering additives for enhancing the densification and microstructure of high conductive garnet-type solid electrolytes at low temperatures of ≤900 °C is reviewed. Sintering additives can modify the grain and grain boundary, both contributing to the optimization of the chemical and electrochemical properties of garnet-type solid electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781

    Article  CAS  Google Scholar 

  2. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727

    Article  CAS  Google Scholar 

  3. Cao C, Li Z, Wang X-L, Zhao X, Han W-Q (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2

    Google Scholar 

  4. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411

    Article  CAS  Google Scholar 

  5. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxide Li7−x La3(Zr2−x, Nbx)O12 (x = 0–2). J Power Sources 196:3342–3345

    Article  CAS  Google Scholar 

  6. Li Y, Han JT, Wang CA, Xie H, Goodenough JB (2012) Optimizing Li+ conductivity in a garnet framework. J Mater Chem 22:15357–15361

    Article  CAS  Google Scholar 

  7. Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R (2013) Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J Power Sources 240:18–25

    Article  CAS  Google Scholar 

  8. Narayanan S, Epp V, Wilkening M, Thangadurai V (2012) Macroscopic and microscopic Li+ transport parameters in cubic garnet-type “Li6.5La2.5Ba0.5ZrTaO12” as probed by impedance spectroscopy and NMR. RSC Adv 2:2553–2561

    Article  CAS  Google Scholar 

  9. Rosero-Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K (2017) Effect of sintering additives on relative density and li-ion conductivity of Nb-doped Li7La3ZrO12 solid electrolyte. J Am Ceram Soc 100:276–285

    Article  CAS  Google Scholar 

  10. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206:28–32

    CAS  Google Scholar 

  11. Cook LP, Plante ER (1992) Phase diagram of the system lithia-alumina. Ceram Trans 27:193–222

    CAS  Google Scholar 

  12. Kulkarni NS, Besmann TM, Spear KE (2008) Thermodynamic optimization of lithia-alumina. J Am Ceram Soc 91:4074–4083

    Article  CAS  Google Scholar 

  13. Jin Y, McGinn PJ (2011) Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J Power Sources 196:8683–8687

    Article  CAS  Google Scholar 

  14. Kumazaki S, Iriyama Y, Kim KH, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem Commun 13:509–512

    Article  CAS  Google Scholar 

  15. Takano R, Tadanaga K, Hayashi A, Tatsumisago M (2014) Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol–gel process. Solid State Ion 255:104–107

    Article  CAS  Google Scholar 

  16. Tadanaga K, Takano R, Ichinose T, Mori S, Hayashi A, Tatsumisago M (2013) Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochem Commun 33:51–54

    Article  CAS  Google Scholar 

  17. Rosero-Navarro NC, Tadanaga K (2016) Sol–gel processing of solid electrolytes for Li-ion Batteries. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol–gel science and technology. Springer International Publishing, Cham, pp 1–18

    Google Scholar 

  18. Rosero-Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K (2016) Preparation of Li7La3(Zr2−x, Nbx)O12 (x = 0–1.5) and Li3BO3/LiBO2 composites at low temperatures using a sol–gel process. Solid State Ion 285:6–12

    Article  CAS  Google Scholar 

  19. Sakamoto J, Rangasamy E, Kim H, Kim Y, Wolfenstine J (2013) Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12. Nanotechnology 24:424005

    Article  Google Scholar 

  20. Tatsumisago M, Hamada A, Minami T, Tanaka M (1983) Structure and properties of Li2O–RO–Nb2O5 glasses (R = Ba, Ca, Mg) prepared by twin-roller quenching. J Non-Cryst Solids 56:423–428

    Article  CAS  Google Scholar 

  21. Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T (2013) All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sources 238:53–56

    Article  CAS  Google Scholar 

  22. Cao Y, Li Y-Q, Guo X-X (2013) Densification and lithium ion conductivity of garnet-type Li7−xLa3Zr2−xTax O12 (x = 0.25) solid electrolytes. Chinese Physics B 22:078201

    Google Scholar 

  23. Janani N, Deviannapoorani C, Dhivya L, Murugan R (2014) Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv 4:51228–51238

    Article  CAS  Google Scholar 

  24. Ohta S, Seki J, Yagi Y, Kihira Y, Tani T, Asaoka T (2014) Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery. J Power Sources 265:40–44

    Article  CAS  Google Scholar 

  25. Rosero-Navarro NC, Miura A, Higuchi M, Tadanaga K (2017) Optimization of Al2O3 and Li3BO3 content as sintering additives of Li7−x La2.95Ca0.05ZrTaO12 at low temperature. J Electron Mater 46:497–501

    Article  CAS  Google Scholar 

  26. Zhou T, Zhang H, Jia L, Liao Y, Zhong Z, Bai F, Su H, Li J, Jin L, Liu C (2015) Enhanced ferromagnetic properties of low temperature sintering LiZnTi ferrites with Li2O–B2O3–SiO2–CaO–Al2O3 glass addition. J Alloy Compd 620:421–426

    Article  CAS  Google Scholar 

  27. Kim YH, Yoon MY, Lee EJ, Hwang HJ (2012) Effect of SiO2/B2O3 ratio on Li ion conductivity of a Li2O-B2O3-SiO2 glass electrolyte. J Ceram Process Res 13:S37–S41

    Google Scholar 

  28. Maia LF, Rodrigues ACM (2004) Electrical conductivity and relaxation frequency of lithium borosilicate glasses. Solid State Ionics 168(1–2):87–92

    Article  CAS  Google Scholar 

  29. Yuan L, Liu B, Shen N, Zhai T, Yang Da (2014) Synthesis and properties of borosilicate/AlN composite for low temperature co-fired ceramics application. J Alloys Compd 593:34–40

    Article  CAS  Google Scholar 

  30. Heydari F, Maghsoudipour A, Hamnabard Z, Farhangdoust S (2013) Evaluation on properties of CaO–BaO–B2O3–Al2O3–SiO2 glass-ceramic sealants for intermediate temperature solid oxide fuel cells. J Mater Sci Technol 29:49–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Appreciation is shown to the Japan Science & Technology Agency (JST) for their financial support under Japan Society for the Promotion of Science Program (JSPS) (2013–2015) with grant number P1337 and national project “Grants-in-Aid for Scientific Research (KAKENHI)” (2017–2020) with reference number 17K17559. Appreciation also goes to the Hokkaido University Global Networking Award 2017 for travel support to attend 1st World Conference on Solid Electrolytes for Advanced Applications: Garnets and Competitors in India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataly C. Rosero-Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosero-Navarro, N.C., Tadanaga, K. (2019). Sintering Additives for Garnet-Type Electrolytes. In: Murugan, R., Weppner, W. (eds) Solid Electrolytes for Advanced Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31581-8_5

Download citation

Publish with us

Policies and ethics