Skip to main content

Influence of Strain on Garnet-Type Electrolytes

  • Chapter
  • First Online:
  • 1114 Accesses

Abstract

All-solid-state batteries (ASSBs) using inorganic solid electrolytes are one of the candidates of next-generation batteries. However, ASSBs suffer from various issues, most of which do not matter in conventional lithium-ion batteries with liquid electrolytes. In this chapter, mechanical stress in solid electrolytes are focused. First, we reveal that garnet-type solid electrolytes, Li6.5La3Zr1.5Ta0.5O12 (LLZT), prepared by the spark plasma sintering (SPS) method, exhibit a residual tensile stress of more than 100 MPa in the direction of uni-axial pressure during the SPS process, which was revealed by XRD (side-inclination method). Then, the influence of the stress on ionic conduction is studied. Detailed analyses reveal that the stress mainly influences grain boundary resistance with little change in the bulk resistance of LLZT. The results suggest the importance of mechanically strong grain boundaries (including interfaces) for practical ASSBs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61:759–770

    Article  CAS  Google Scholar 

  2. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 4:16030-1–16030-7

    Google Scholar 

  3. Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22:949–956

    Article  CAS  Google Scholar 

  4. Thangadurai V, Kaack H, Weppner W (2003) Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86:437–440

    Article  CAS  Google Scholar 

  5. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781

    Article  CAS  Google Scholar 

  6. Murugan R, Thangadurai V, Weppner W (2008) Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes. J Electrochem Soc 155:A90–A101

    Article  CAS  Google Scholar 

  7. Shimonishi Y, Toda A, Zhang T, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) Synthesis of garnet-type Li7−xLa3Zr2O12−1/2x and its stability in aqueous solutions. Solid State Ion 183:48–53

    Article  CAS  Google Scholar 

  8. Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N (2014) Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J Electrochem Soc 161:A668–A674

    Article  CAS  Google Scholar 

  9. Ren Y, Deng H, Chen R, Shen Y, Lin Y, Nan CW (2015) Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics. J Eur Ceram Soc 35:561–572

    Article  CAS  Google Scholar 

  10. Kali R, Mukhopadhyay A (2014) Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective. J Power Sources 247:920–931

    Article  CAS  Google Scholar 

  11. Baek SW, Lee JM, Kim TY, Song MS, Park Y (2014) Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J Power Sources 249:197–206

    Article  CAS  Google Scholar 

  12. Zhang Y, Chena F, Tu R, Shen Zhang L (2014) Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. J Power Sources 268:960–964

    Article  CAS  Google Scholar 

  13. Yamada H, Ito T, Hongahally Basappa R (2016) Sintering mechanisms of high-performance garnet-type solid electrolyte densified by spark plasma sintering. Electrochim Acta 222:648–656

    Article  CAS  Google Scholar 

  14. Hongahally Basappa R, Ito T, Yamada H (2017) Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J Electrochem Soc 164:A666–A671

    Article  Google Scholar 

  15. Hongahally Basappa R, Ito T, Yamada H (2017) Grain boundary modification to suppress lithium penetration through garnet-type solid electrolyte. J Power Sources 363:145–152

    Article  Google Scholar 

  16. Botros M, Djenadic R, Clemens O, Möller M, Hahn H (2016) Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. J Power Sources 309:108–115

    Article  CAS  Google Scholar 

  17. Sato K, Suzuki K, Narumi R, Yashiro K, Hashida T, Mizusaki J (2011) Ionic conductivity in uniaxial micro strain/stress fields of yttria-stabilized zirconia. Jpn J Appl Phys 50:055803

    Article  Google Scholar 

  18. Araki W, Imai Y, Adachi T (2009) Mechanical stress effect on oxygen ion mobility in 8 mol% yttria-stabilized zirconia electrolyte. J Eur Ceram Soc 29:2275–2279

    Article  CAS  Google Scholar 

  19. Okumura T, Nakatsutsumi T, Ina T, Orikasa Y, Arai H, Fukutsuka T, Iriyama Y, Uruga T, Tanida H, Uchimoto Y, Ogumi Z (2011) Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries. J Mater Chem 21:10051–10060

    Article  CAS  Google Scholar 

  20. Yamada H, Ito T, Hongahally Basappa R, Bekarevich R, Mitsuishi K (2017) Influence of strain on local structure and lithium ionic conduction in garnet-type solid electrolyte. J Power Sources 368:97–106

    Article  CAS  Google Scholar 

  21. Tanaka K (1993) X-ray stress measurement of alumina/zirconia composites. In: Tanaka K, Kodama S, Goto T (ed) X-ray diffraction studies on the deformation and fracture of solids, North Holland, p 1–27

    Google Scholar 

  22. Murata K, Mizutani K, Tanaka Y (1992) An approach to residual stress in the ground layer of ceramics from material removal by ground. J Soc Mat Sci Jpn 41:624–630

    Article  CAS  Google Scholar 

  23. Izumi F, Momma K (2007) Three-dimensional visualization in powder diffraction. Solid State Phenom 130:15–20

    Article  CAS  Google Scholar 

  24. Stephens PW (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Cryst 32:281–289

    Article  CAS  Google Scholar 

  25. Ni JE, Case ED, Sakamoto JS, Rangasamy E, Wolfenstine JB (2012) Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci 47:7978–7985

    Article  CAS  Google Scholar 

  26. Yu S, Schmidt RD, Garcia-Mendez R, Herbert E, Dudney NJ, Wolfenstine JB, Sakamoto J, Siegel DJ (2016) Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 28:197–206

    Article  CAS  Google Scholar 

  27. Angerer P, Artner W, Neubauer E, Yu LG, Khor KA (2009) Residual stress of ruthenium powder samples compacted by spark-plasma-sintering (SPS) determined by X-ray diffraction. Int J Refract Met Hard Mater 27:105–110

    Article  CAS  Google Scholar 

  28. Benabdallah F, Elissalde C, Chung Seu UC, Michau D, Poulon-Quintin A, Gayot M, Garreta P, Khemakhem H, Maglione M (2015) Structure–microstructure–property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering. J Eur Ceram Soc 35:4153–4161

    Article  CAS  Google Scholar 

  29. Wei S, Zhang ZH, Shen XB, Wang FC, Lee SK (2012) Numerical simulation for residual stresses of the spark plasma sintered Ti–TiB composites. J Comp Theor Nanoscience 9:1180–1184

    Article  CAS  Google Scholar 

  30. Logéat A, Köhler T, Eisele U, Stiaszny B, Harzer A, Tovar M, Senyshyn A, Ehrenberg H, Kozinsky B (2012) From order to disorder: the structure of lithium-conducting garnets Li7−xLa3TaxZr2−xO12 (x = 0–2). Solid State Ion 206:33–38

    Google Scholar 

  31. Fleig J (2002) The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data. Solid State Ion 150:181–193

    Article  CAS  Google Scholar 

  32. Shirpour M, Merkle R, Lin CT, Maier J (2012) Nonlinear electrical grain boundary properties in proton conducting Y–BaZrO3 supporting the space charge depletion model. Phys Chem Chem Phys 14:730–740

    Article  CAS  Google Scholar 

  33. Adams TB, Sinclair DC, West AR (2002) Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv Mater 14:1321–1323

    Article  CAS  Google Scholar 

  34. Yamada H, Tsunoe D, Shiraishi S, Isomichi G (2015) Reduced grain boundary resistance by surface modification. J Phys Chem C 119:5412–5419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was financially supported by the research project “Advanced Low Carbon Technology Research and Development Program for Specially Promoted Research for Innovative Next Generation Batteries” of the Japan Science and Technology Agency (JST-ALCA SPRING), which is gratefully acknowledged. The author is also thankful to Ms. T. Ito (Nagasaki University) for her synthesis and preparation of specimens, and to Dr. R. Bekarevich (National Institute for Materials Science) and Dr. K. Mitsuishi (National Institute for Materials Science) for advanced skills and helpful discussions on the STEM observation and EDS-ED analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotoshi Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamada, H. (2019). Influence of Strain on Garnet-Type Electrolytes. In: Murugan, R., Weppner, W. (eds) Solid Electrolytes for Advanced Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-31581-8_4

Download citation

Publish with us

Policies and ethics