Skip to main content

Fretting

  • Chapter
  • First Online:
  • 253 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMANUFACT))

Abstract

Fretting can be defined as a relative motion with a very small amplitude between two oscillating surfaces. Depending on the applied normal load and relative displacements, various sliding regimes can be identified: a partial slip and a gross slip. A fretting damage type is dependent on sliding regimes, and it leads to cracking (fretting fatigue) under a partial slip (lower amplitude) and wear damage under a gross slip (higher amplitude).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F. Akhtar, S.J. Guo, Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites. Mater. Charact. 59, 84–90 (2008). https://doi.org/10.1016/j.matchar.2006.10.021

    Article  CAS  Google Scholar 

  2. K.C. Budinsky, Effect of hardness differential on metal-to-metal fretting damage. Wear 301, 501–507 (2013). https://doi.org/10.1016/j.wear.2013.01.003

    Article  CAS  Google Scholar 

  3. I.S. Cho, A. Amanov, D.H. Kwak et al., The influence of surface modification techniques on fretting wear of Al–Si alloy prepared by gravity die casting. Mater. Des. 65, 401–409 (2015). https://doi.org/10.1016/j.matdes.2014.09.036

    Article  CAS  Google Scholar 

  4. K. Elleuch, S. Fouvry, Wear analysis of A357 aluminum alloy under fretting. Wear 253, 662–672 (2002). https://doi.org/10.1016/S0043-1648(02)00116-3

    Article  CAS  Google Scholar 

  5. S. Fouvry, Ph Kapsa, L. Vincent, Analysis of sliding behavior for fretting loading: determination of transition criteria. Wear 185, 21–46 (1995). https://doi.org/10.1016/0043-1648(94)06582-9

    Article  Google Scholar 

  6. S. Fouvry, Ph Kapsa, L. Vincent, Quantification of fretting damage. Wear 200, 186–205 (1996). https://doi.org/10.1016/S0043-1648(96)07306-1

    Article  CAS  Google Scholar 

  7. Y. Fu, J. Wei, A.W. Batchelor, Some considerations on the mitigation of fretting damage by the application of surface-modification technologies. J. Mater. Process. Technol. 99, 231–245 (2000). https://doi.org/10.1016/S0924-0136(99)00429-X

    Article  Google Scholar 

  8. Q. Hu, I.R. McColl, S.J. Harris et al., The role of debris in the fretting wear of a SiC reinforced aluminium alloy matrix composite. Wear 245, 10–21 (2000). https://doi.org/10.1016/S0043-1648(00)00461-0

    Article  CAS  Google Scholar 

  9. W. Huang, B. Hou, Y. Pang et al., Fretting wear behavior of AZ91D and AM60B magnesium alloy. Wear 260, 1173–1178 (2006). https://doi.org/10.1016/j.wear.2005.07.023

    Article  CAS  Google Scholar 

  10. M. Imai, H. Teramoto, Y. Shimauchi et al., Effect of oil supply on fretting wear. Wear 110, 217–225 (1986). https://doi.org/10.1016/0043-1648(86)90099-2

    Article  Google Scholar 

  11. A. Iwabuchi, The role of oxide particles in the fretting wear of mild steel. Wear 151, 337–344 (1991). https://doi.org/10.1016/0043-1648(91)90257-U

    Article  Google Scholar 

  12. T. Jibiki, M. Shima, T. Motoda et al., Role of surface micro-texturing in acceleration of initial running-in during lubricated fretting. Tribol. Online 5, 33–39 (2010). https://doi.org/10.2474/trol.5.33

    Article  Google Scholar 

  13. M. Kalin, J. Vizintin, S. Novak, Effect of fretting conditions on the wear of silicon nitride against bearing steel. Mater. Sci. Eng. A220, 191–199 (1996). https://doi.org/10.1016/S0921-5093(96)10457-3

    Article  CAS  Google Scholar 

  14. M. Kalin, J. Vizintin, S. Novak et al., Wear mechanisms in oil-lubricated and dry fretting of silicon nitride against bearing steel contacts. Wear 210, 27–38 (1997). https://doi.org/10.1016/S0043-1648(97)00082-3

    Article  CAS  Google Scholar 

  15. H.K. Ki, Y.H. Lee, S.P. Heo, Mechanical and experimental investigation on nuclear fuel fretting. Tribol. Int. 39, 1305–1319 (2006). https://doi.org/10.1016/j.triboint.2006.02.027

    Article  Google Scholar 

  16. K. Kim, Fretting studies on electroplated brass contacts. Int. J. Mech. Sci. 140, 306–312 (2018). https://doi.org/10.1016/j.ijmecsci.2018.03.012

    Article  Google Scholar 

  17. K.J. Kubiak, M. Bigerelle, T.G. Mathia et al., Roughness of interface in dry contact under fretting conditions, in Proceedings on the 13th International Conference on Metrology and Properties of Engineering Surfaces, Twickenham Stadium, UK, 12–15 April 2011

    Google Scholar 

  18. K.J. Kubiak, T.E. Liskiewicz, T.G. Mathia, Surface morphology in engineering applications: Influence of roughness on sliding and wear in dry fretting. Tribol. Int. 44, 1427–1432 (2011). https://doi.org/10.1016/j.triboint.2011.04.020

    Article  CAS  Google Scholar 

  19. K.J. Kubiak, T.G. Mathia, Influence of roughness on contact interface in fretting under dry and boundary lubricated sliding regimes. Wear 267, 315–321 (2009). https://doi.org/10.1016/j.wear.2009.02.011

    Article  CAS  Google Scholar 

  20. K.J. Kubiak, T.G. Mathia, S. Fouvry, Interface roughness effect on friction map under fretting contact conditions. Tribol. Int. 43, 1500–1507 (2010). https://doi.org/10.1016/j.triboint.2010.02.010

    Article  Google Scholar 

  21. L. Lee, E. Regis, S. Descartes et al., Fretting wear behavior of Zn–Ni alloy coatings. Wear 330–331, 112–121 (2015). https://doi.org/10.1016/j.wear.2015.02.043

    Article  CAS  Google Scholar 

  22. E.R. Leheup, D. Zhang, J.R. Moon, Fretting wear of sintered iron under low normal pressure. Wear 221, 86–92 (1998). https://doi.org/10.1016/S0043-1648(98)00265-8

    Article  CAS  Google Scholar 

  23. J.D. Lemm, A.R. Warmuth, S.R. Pearson et al., The influence of surface hardness on the fretting wear of steel pairs—its role in debris retention in contact. Tribol. Int. 81, 258–266 (2015). https://doi.org/10.1016/j.triboint.2014.09.003

    Article  CAS  Google Scholar 

  24. A. Lenart, P. Pawlus, A. Dzierwa, The effect of steel disc surface texture in contact with ceramic ball on friction and wear in dry fretting. Surf. Topogr. Metrol. Prop. 6(3), 034004 (2018). https://doi.org/10.1088/2051-672X/aac1a2

    CAS  Google Scholar 

  25. A. Lenart, P. Pawlus, A. Dzierwa et al., The effect of surface topography on dry fretting in the gross slip regime. Arch. Civ. Mech. Eng. 17(4), 894–904 (2017). https://doi.org/10.1016/j.acme.2017.03.008

    Article  Google Scholar 

  26. A. Lenart, P. Pawlus, A. Dzierwa et al., The effect of wear debris removal on the fretting of rough surfaces. Tribologia 4, 47–54 (2017). https://doi.org/10.5604/01.3001.0010.5993

    Article  Google Scholar 

  27. A. Lenart, P. Pawlus, S. Wos et al., The effect of surface texturing on dry gross fretting. Lubricants 6, 92 (2018). https://doi.org/10.3390/lubricants6040092

    Article  Google Scholar 

  28. B.D. Leonard, F. Sadeghi, S. Shinde et al., Rough surface and damage mechanics under wear modeling using the combined finite-discrete element method. Wear 305, 312–321 (2013). https://doi.org/10.1016/j.wear.2012.12.034

    Article  CAS  Google Scholar 

  29. J. Li, Y.H. Lu, Effects of displacement amplitude on fretting wear behaviors and mechanism of Inconel 600 Alloy. Wear 304, 223–230 (2013). https://doi.org/10.1016/j.wear.2013.04.027

    Article  CAS  Google Scholar 

  30. L. Li, I. Etsion, F.E. Talke, The effect of frequency on fretting in a micro-spherical contact. Wear 270, 857–865 (2011). https://doi.org/10.1016/j.wear.2011.02.014

    Article  CAS  Google Scholar 

  31. Q.Y. Liu, Z.R. Zhou, Effect of displacement amplitude in oil-lubricated fretting. Wear 239, 237–243 (2000). https://doi.org/10.1016/S0043-1648(00)00323-9

    Article  CAS  Google Scholar 

  32. W. Lu, P. Zhang, X. Liu et al., Influence of surface topography on torsional fretting under flat-on-flat contact. Tribol. Int. 109, 367–372 (2017). https://doi.org/10.1016/j.triboint.2017.01.001

    Article  Google Scholar 

  33. M. Odfalk, O. Vingsbo, Influence of normal force and frequency on fretting. Tribol. Trans. 33, 604–610 (1990). https://doi.org/10.1080/10402009008981995

    Article  Google Scholar 

  34. N. Ohmae, T. Tsukizoe, The effect of slip amplitude on fretting. Wear 27, 281–294 (1974). https://doi.org/10.1016/0043-1648(74)90114-8

    Article  Google Scholar 

  35. M. Okamoto, T. Jibiki, S. Ito et al., Role of cross-grooved type texturing in acceleration of initial running-in under lubricated fretting. Tribol. Int. 100, 126–131 (2016). https://doi.org/10.1016/j.triboint.2015.12.012

    Article  Google Scholar 

  36. Y.W. Park, G.R. Bapu, K.Y. Lee, Studies of tin coated brass contacts in fretting conditions under different loads and frequencies. Surf. Coat. Technol. 201, 7939–7951 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.039

    Article  CAS  Google Scholar 

  37. Y.W. Park, T.S. Narayanan, K.Y. Lee, Effect of fretting amplitude and frequency on the fretting corrosion behavior of thin plated contacts. Surf. Coat. Technol. 201, 2181–2192 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.031

    Article  CAS  Google Scholar 

  38. P. Pawlus, R. Michalczewski, A. Lenart et al., The effect of random surface topography height on fretting in dry gross slip conditions. Proc. Inst. Mech. Eng. J J. Eng. 228, 1374–1391 (2014). https://doi.org/10.1177/1350650114539467

    Article  Google Scholar 

  39. K. Pereira, T. Yue, M.A. Wahab, Multiscale analysis of the effect of roughness on fretting wear. Tribol. Int. 110, 222–231 (2017). https://doi.org/10.1016/j.triboint.2017.02.024

    Article  Google Scholar 

  40. B. Raeymaekers, F.E. Talke, The effect of laser polishing on fretting wear between a hemisphere and a flat plate. Wear 269, 416–423 (2010). https://doi.org/10.1016/j.wear.2010.04.027

    Article  CAS  Google Scholar 

  41. R. Ramesh, R. Gnanamoorthy, Effect of hardness on fretting behavior of structural steel. Mater. Des. 28, 1447–1452 (2007). https://doi.org/10.1016/j.matdes.2006.03.020

    Article  CAS  Google Scholar 

  42. J. Sato, M. Shima, T. Sugawara et al., Effect of lubricants on fretting wear of steel. Wear 125, 83–95 (1988). https://doi.org/10.1016/0043-1648(88)90195-0

    Article  CAS  Google Scholar 

  43. M. Shima, H. Suetake, I.R. McColl et al., On the behaviour of an oil lubricated fretting contact. Wear 210, 304–310 (1997). https://doi.org/10.1016/S0043-1648(97)00078-1

    Article  CAS  Google Scholar 

  44. S. Soderberg, U. Bryggman, T. McCullough, Frequency effects in fretting wear. Wear 110, 19–34 (1986). https://doi.org/10.1016/0043-1648(86)90149-3

    Article  Google Scholar 

  45. L. Toth, The investigation of the steady stage of steel fretting. Wear 20, 277–286 (1972). https://doi.org/10.1016/0043-1648(72)90409-7

    Article  CAS  Google Scholar 

  46. M. Varenberg, I. Etsion, E. Altus, Theoretical substantiation of the slip index approach to fretting. Tribol. Lett. 19, 263–264 (2005). https://doi.org/10.1007/s11249-005-7442-8

    Article  Google Scholar 

  47. M. Varenberg, I. Etsion, G. Halperin, Slip index: a new unified approach to fretting. Tribol. Lett. 17(3), 569–573 (2004). https://doi.org/10.1023/B:TRIL.0000044506.98760.f9

    Article  Google Scholar 

  48. M. Varenberg, G. Halperin, I. Etsion, Different aspects of the role of wear debris in fretting wear. Wear 252, 902–910 (2002). https://doi.org/10.1016/S0043-1648(02)00044-3

    Article  CAS  Google Scholar 

  49. O. Vingsbo, S. Soerberg, On fretting maps. Wear 126, 131–147 (1988). https://doi.org/10.1016/0043-1648(88)90134-2

    Article  CAS  Google Scholar 

  50. D. Wang, D. Zhang, S. Ge, Effect of displacement amplitude on fretting fatigue behavior of hoisting rope wires in low cycle fatigure. Tribol. Int. 52, 178–189 (2012). https://doi.org/10.1016/j.triboint.2012.04.008

    Article  CAS  Google Scholar 

  51. Z.A. Wang, Z.R. Zhou, An investigation of fretting behaviour of several synthetic base oils. Wear 267, 1399–1404 (2009). https://doi.org/10.1016/j.wear.2008.12.092

    Article  CAS  Google Scholar 

  52. A.R. Warmuth, W. Sun, P.H. Shipway, The roles of contact conformity, temperature and displacement amplitude on the lubricated fretting wear of a steel-on-steel contact. R. Soc. Open Sci. 3, 150637 (2016). https://doi.org/10.1098/rsos.150637

    Article  CAS  Google Scholar 

  53. Y. Yoon, I. Etsion, F.E. Talke, The evolution of fretting wear in a micro-spherical contact. Wear 270, 567–575 (2011). https://doi.org/10.1016/j.wear.2011.01.013

    Article  CAS  Google Scholar 

  54. J. Yu, L. Qian, B. Yu et al., Nanofretting behavior of monocrystalline silicon (1 0 0) against SiO2 microsphere in vacuum. Tribol. Lett. 34, 31–40 (2009). https://doi.org/10.1007/s11249-008-9385-3

    Article  CAS  Google Scholar 

  55. Z.R. Zhou, E. Sauger, J.J. Liu et al., Nucleation and early growth of tribologically transformed structure (TTS) induced by fretting. Wear 212, 50–58 (1997). https://doi.org/10.1016/S0043-1648(97)00141-5

    Article  CAS  Google Scholar 

  56. Z.R. Zhou, S. Nakazawa, M.H. Zhu et al., Progress in fretting maps. Tribol. Int. 39, 1068–1073 (2006). https://doi.org/10.1016/j.triboint.2006.02.001

    Article  Google Scholar 

  57. Z.R. Zhou, L. Vincent, Mixed fretting regimes. Wear 181–183, 531–536 (1995). https://doi.org/10.1016/0043-1648(95)90168-X

    Article  Google Scholar 

  58. Z.R. Zhou, L. Vincent, Lubrication in fretting—a review. Wear 225–229, 962–967 (1999). https://doi.org/10.1016/S0043-1648(99)00038-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Pawlus .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pawlus, P., Dzierwa, A., Lenart, A. (2020). Fretting. In: Dry Gross Fretting of Rough Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-31563-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31563-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31562-7

  • Online ISBN: 978-3-030-31563-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics