Skip to main content

Triple-Negative Breast Cancer

  • Chapter
  • First Online:
Oncology in the Precision Medicine Era

Abstract

Triple-negative breast cancer (TNBC) represents approximately 15% of breast cancers and is characterized by the lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2). The annual incidence of TNBC is estimated to be approximately 40,000, with 20,000 diagnosed with metastatic disease in the USA (Plasilova et al. Medicine 95:e4614, 2016). The current standard-of-care treatment for TNBC remains to be cytotoxic chemotherapy, and the only FDA-approved targeted therapy is olaparib for the treatment of BRCA-associated TNBCs (Robson et al. OlympiAD: phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm). American Society of Clinical Oncology, 2017). Despite aggressive upfront chemotherapy, a high percentage of patients still face increased risk of early metastasis and death from TNBC (Anders and Carey. Clin Breast Cancer 9:S73–S81, 2009). In the metastatic setting following first-line treatment, median overall survival is 6–13 months, and medial progression-free survival (PFS) is 3–4 months (Kassam et al. Clin Breast Cancer 9:29–33, 2009; Lin et al. Cancer 118:5463–5472, 2012). There is no standard chemotherapy to treat patients with refractory or relapsed disease.

In this chapter, we will discuss the molecular mechanisms of chemotherapy resistance and potential targeted therapy options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plasilova ML, Hayse B, Killelea BK, Horowitz NR, Chagpar AB, Lannin DR. Features of triple-negative breast cancer: analysis of 38,813 cases from the national cancer database. Medicine. 2016;95(35):e4614.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Robson ME, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung NM, Armstrong A. OlympiAD: phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm): American Society of Clinical Oncology; 2017. Journal of Clinical Oncology. https://ascopubs.org/doi/abs/10.1200/JCO.2017.35.18_suppl.LBA4.

  3. Anders CK, Carey LA. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 2009;9:S73–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kassam F, Enright K, Dent R, Dranitsaris G, Myers J, Flynn C, Fralick M, Kumar R, Clemons M. Survival outcomes for patients with metastatic triple-negative breast cancer: implications for clinical practice and trial design. Clin Breast Cancer. 2009;9(1):29–33.

    Article  PubMed  Google Scholar 

  5. Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong YN, Blayney DW, Niland JC, Winer EP, Weeks JC. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer. 2012;118(22):5463–72.

    Article  PubMed  Google Scholar 

  6. Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61.

    Article  CAS  Google Scholar 

  7. Lehmann BD, Pietenpol JA. Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast. 2015;24(Suppl 2):S36–40.

    Article  PubMed  Google Scholar 

  8. Denkert C, Liedtke C, Tutt A, von Minckwitz G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet. 2017;389(10087):2430–42.

    Article  CAS  PubMed  Google Scholar 

  9. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lehmann BD, Pietenpol JA, Tan AR. Triple-negative breast cancer: molecular subtypes and new targets for therapy. Am Soc Clin Oncol Educ Book. 2015;35:e31–9.

    Article  Google Scholar 

  11. Collignon J, Lousberg L, Schroeder H, Jerusalem G. Triple-negative breast cancer: treatment challenges and solutions. Breast Cancer. 2016;8:93.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.

    Article  CAS  PubMed  Google Scholar 

  14. Ring BZ, Hout DR, Morris SW, Lawrence K, Schweitzer BL, Bailey DB, Lehmann BD, Pietenpol JA, Seitz RS. Generation of an algorithm based on minimal gene sets to clinically subtype triple negative breast cancer patients. BMC Cancer. 2016;16:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40.

    Article  CAS  PubMed  Google Scholar 

  16. Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, Giltnane J, Lacap JA, Crocker L, Young A. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. J Clin Oncol. 2017;23(18):5561–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parker JS, Peterson AC, Tudor IC, Hoffman J, Uppal H. A novel biomarker to predict sensitivity to enzalutamide (ENZA) in TNBC: American Society of Clinical Oncology; 2015.

    Google Scholar 

  18. Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut S-J. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abramson VG, Lehmann BD, Ballinger TJ, Pietenpol JA. Subtyping of triple-negative breast cancer: implications for therapy. Cancer. 2015;121(1):8–16.

    Article  PubMed  Google Scholar 

  21. Yunokawa M, Koizumi F, Kitamura Y, Katanasaka Y, Okamoto N, Kodaira M, Yonemori K, Shimizu C, Ando M, Masutomi K. Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells. Cancer Sci. 2012;103(9):1665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gordon V, Banerji S. Molecular pathways: PI3K pathway targets in triple-negative breast cancers. Clin Cancer Res. 2013;19(14):3738–44.

    Article  CAS  PubMed  Google Scholar 

  23. Luyimbazi D, Luu TH, Xing Q, Yan J, Tully D, Han ES, Yip R, Yim JH. Effect of eribulin on cell growth and PI3K pathway activity with and without RAD001 in triple-negative and HER2-expressing breast cancer: American Society of Clinical Oncology, Journal of Clinical Oncology; 2013.

    Google Scholar 

  24. Luyimbazi D, Luu T, Xing Q and Yan J. (2013). Comparison of PI3K inhibition by eribulin, other microtubule targeting agent, and a DNA-damaging chemotherapeutic in triple negative breast cancer cell lines. San Antonio Breast Cancer Symposium, Poster session, pp. 10–14.

    Google Scholar 

  25. Schmid P, Abraham J, Chan S, Wheatley D, Brunt M, Nemsadze G, Baird R, Park YH, Hall P, Perren T. AZD5363 plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (PAKT): a randomised, double-blind, placebo-controlled, phase II trial: American Society of Clinical Oncology, Journal of Clinical Oncology; 2018.

    Google Scholar 

  26. Wallin JJ, Guan J, Prior WW, Edgar KA, Kassees R, Sampath D, Belvin M, Friedman LS. Nuclear phospho-Akt increase predicts synergy of PI3K inhibition and doxorubicin in breast and ovarian cancer. Sci Transl Med. 2010;2(48):48ra66.

    Article  PubMed  CAS  Google Scholar 

  27. Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, Rugo HS, Liu MC, Stearns V, Come SE, Timms KM, Hartman AR, Borger DR, Finkelstein DM, Garber JE, Ryan PD, et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33(17):1902–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dent RA, Kim S-B, Im S-A, Espie M, Blau S, Tan AR, Isakoff S, Oliveira M, Saura C, Wongchenko M. LOTUS (NCT02162719): a double-blind placebo (PBO)-controlled randomized phase II trial of first-line ipatasertib (IPAT)+ paclitaxel (P) for metastatic triple-negative breast cancer (TNBC): American Society of Clinical Oncology, Journal of Clinical Oncology; 2017.

    Google Scholar 

  29. Kim S-B, Tan AR, Im S-A, Villanueva R, Valero V, Saura C, Oliveira M, Isakoff SJ, Singel SM, Dent RA. LOTUS: a randomized, phase II, multicenter, placebo-controlled study of ipatasertib (Ipat, GDC-0068), an inhibitor of Akt, in combination with paclitaxel (Pac) as front-line treatment for patients (pts) with metastatic triple-negative breast cancer (TNBC): American Society of Clinical Oncology, Journal of Clinical Oncology; 2015.

    Google Scholar 

  30. Dent R, Kim S-B, Oliveira M, Isakoff SJ, Barrios CH, O’Shaughnessy J, Lu X, Wongchenko M, Bradley D, Mani A. IPATunity130: a pivotal randomized phase III trial evaluating ipatasertib (IPAT)+ paclitaxel (PAC) for PIK3CA/AKT1/PTEN-altered advanced triple-negative (TN) or hormone receptor-positive HER2-negative (HR+/HER2–) breast cancer (BC): American Society of Clinical Oncology, Journal of Clinical Oncology; 2018.

    Google Scholar 

  31. Eiermann W, Bergh J, Cardoso F, Conte P, Crown J, Curtin N, Gligorov J, Gusterson B, Joensuu H, Linderholm B. Triple negative breast cancer: proposals for a pragmatic definition and implications for patient management and trial design. Breast. 2012;21(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, Lanchbury JS, Stemke-Hale K, Hennessy BT, Arun BK. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 2011;17(5):1082–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murai J, Shar-yin NH, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193.

    Article  CAS  PubMed  Google Scholar 

  36. Robson M, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.

    Article  CAS  PubMed  Google Scholar 

  37. Litton JK, Rugo HS, Ettl J, Hurvitz S, Gonçalves A, Lee K, Fehrenbacher L, Yerushalmi R, Mina LA and Martin M. (2017). A phase 3 trial comparing talazoparib, an oral PARP inhibitor, to physician’s choice of therapy in patients with advanced breast cancer and a germline BRCA-mutation. San antonio breast cancer symposium, pp. 5–9.

    Google Scholar 

  38. Litton J, Rugo H, Ettl J, Hurvitz S, Gonçalves A, Lee K-H, Fehrenbacher L, Yerushalmi R, Mina L, Martin M, Roché H, Im Y-H, Quek R, Tudor I, Hannah A, Eiermann W, et al. Abstract GS6-07: EMBRACA: a phase 3 trial comparing talazoparib, an oral PARP inhibitor, to physician’s choice of therapy in patients with advanced breast cancer and a germline <em>BRCA</em> mutation. Cancer Res. 2018;78(4 Supplement).:GS6-07-GS06-07.

    Google Scholar 

  39. Litton JK, Scoggins M, Hess KR, Adrada B, Barcenas CH, Murthy RK, Damodaran S, DeSnyder SM, Brewster AM, Thompson AM. Neoadjuvant talazoparib (TALA) for operable breast cancer patients with a BRCA mutation (BRCA+): American Society of Clinical Oncology, Journal of Clinical Oncology; 2018.

    Google Scholar 

  40. Vinayak S, Tolaney SM, Schwartzberg LS, Mita MM, McCann GA-L, Tan AR, Wahner Hendrickson AE, Forero-Torres A, Anders CK, Wulf GM. TOPACIO/Keynote-162: Niraparib+ pembrolizumab in patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial: American Society of Clinical Oncology, Journal of Clinical Oncology; 2018.

    Google Scholar 

  41. Watkins JA, Irshad S, Grigoriadis A, Tutt AN. Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res. 2014;16(3):211.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, Kalva S, Potter J, Tran TV, Chen J. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16(6):475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tutt A, Tovey H, Cheang, MCU, Kernaghan S, Kilburn L, Gazinska P, Owen J, Abraham J, Barrett S, Barrett-Lee P, Brown R. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med. 2018;24(5):628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, Rugo HS, Liu MC, Stearns V, Come SE. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33(17):1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, Blohmer JU, Jackisch C, Paepke S, Gerber B. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56.

    Article  CAS  Google Scholar 

  46. Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, Kuzma CS, Pluard TJ, Somlo G, Port ER. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33(1):13.

    Article  CAS  PubMed  Google Scholar 

  47. Von Minckwitz G, Hahnen E, Fasching PA, Hauke J, Schneeweiss A, Salat C, Rezai M, Blohmer JU, Zahm DM, Jackisch C. Pathological complete response (pCR) rates after carboplatin-containing neoadjuvant chemotherapy in patients with germline BRCA (g BRCA) mutation and triple-negative breast cancer (TNBC): results from GeparSixto. Am Soc Clin Oncol. 2014;32:1005.

    Article  Google Scholar 

  48. Tutt A, Ellis P, Kilburn L, Gilett C, Pinder S, Abraham J, Barrett S, Barrett-Lee P, Chan S, Cheang M, Dowsett M, Fox L, Gazinska P, Grigoriadis A, Gutin A, Harper-Wynne C, et al. Abstract S3-01: the TNT trial: a randomized phase III trial of carboplatin (C) compared with docetaxel (D) for patients with metastatic or recurrent locally advanced triple negative or <em>BRCA1/2</em> breast cancer (CRUK/07/012). Cancer Res. 2015;75(9 Supplement):S3-01.

    Google Scholar 

  49. Vera-Badillo FE, Templeton AJ, de Gouveia P, Diaz-Padilla I, Bedard PL, Al-Mubarak M, Seruga B, Tannock IF, Ocana A, Amir E. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst. 2013;106(1):djt319.

    Article  PubMed  CAS  Google Scholar 

  50. Loibl S, Müller BM, von Minckwitz G, Schwabe M, Roller M, Darb-Esfahani S, Ataseven B, Du Bois A, Fissler-Eckhoff A, Gerber B. Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;130(2):477.

    Article  CAS  PubMed  Google Scholar 

  51. Masuda H, Masuda N, Kodama Y, Ogawa M, Karita M, Yamamura J, Tsukuda K, Doihara H, Miyoshi S, Mano M. Predictive factors for the effectiveness of neoadjuvant chemotherapy and prognosis in triple-negative breast cancer patients. Cancer Chemother Pharmacol. 2011;67(4):911–7.

    Article  CAS  PubMed  Google Scholar 

  52. Gasparini P, Fassan M, Cascione L, Guler G, Balci S, Irkkan C, Paisie C, Lovat F, Morrison C, Zhang J. Androgen receptor status is a prognostic marker in non-basal triple negative breast cancers and determines novel therapeutic options. PLoS One. 2014;9(2):e88525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  54. Wang C, Pan B, Zhu H, Zhou Y, Mao F, Lin Y, Xu Q, Sun Q. Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget. 2016;7(29):46482.

    PubMed  PubMed Central  Google Scholar 

  55. Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, Blackwell KL, Rugo H, Nabell L, Forero-Torres A. Phase II trial of bicalutamide in patients with androgen receptor positive, hormone receptor negative metastatic Breast Cancer. Clin Cancer Res. 2013;19(19):5505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Traina TA, Miller K, Yardley DA, O’Shaughnessy J, Cortes J, Awada A, Kelly CM, Trudeau ME, Schmid P, Gianni L. Results from a phase 2 study of enzalutamide (ENZA), an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer (TNBC). Am Soc Clin Oncol. 2015;33:1003.

    Article  Google Scholar 

  57. Bonnefoi H, Grellety T, Tredan O, Saghatchian M, Dalenc F, Mailliez A, L’haridon T, Cottu P, Abadie-Lacourtoisie S, You B. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol. 2016;27(5):812–8.

    Article  CAS  PubMed  Google Scholar 

  58. Gucalp A, Proverbs-Singh TA, Corben A, Moynahan ME, Patil S, Boyle LA, Hudis CA, Traina TA. Phase I/II trial of palbociclib in combination with bicalutamide for the treatment of androgen receptor (AR)+ metastatic breast cancer (MBC): American Society of Clinical Oncology, Journal of Clinical Oncology; 2016.

    Google Scholar 

  59. Santa-Maria C, Rampurwala M, Wisinski K, Toppmeyer D, O’Regan R. Abstract OT1-05-01: a phase I/II, single arm, non-randomized study of ribociclib (LEE011), a CDK 4/6 inhibitor, in combination with bicalutamide, an androgen receptor (AR) inhibitor, in advanced AR+ triple-negative breast cancer: AACR; 2018. https://cancerres.aacrjournals.org/content/78/4_Supplement/OT1-05-01.short.

  60. Yuan Y, Frankel P, Synold T, Lee P, Yost S, Martinez N, Tang A, Mendez B, Schmolze D, Apple S. Abstract OT1-05-02: a phase II clinical trial of the combination of pembrolizumab and selective androgen receptor modulator GTx-024 in patients with advanced androgen receptor positive triple negative breast cancer: AACR; 2018.

    Google Scholar 

  61. Costa RL, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018;169(3):397–406.

    Article  CAS  PubMed  Google Scholar 

  62. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, Cescon DW, Iwata H, Campone M, Nanda R. Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. Am Soc Clin Oncol. 2017;35:1008.

    Article  Google Scholar 

  64. Adams S, Loi S, Toppmeyer D, Cescon D, De Laurentiis M, Nanda R, Winer E, Mukai H, Tamura K, Armstrong AC. KEYNOTE-086 cohort B: pembrolizumab monotherapy for PD-L1–positive, previously untreated, metastatic triple-negative breast cancer (mTNBC). Cancer Res. 2018.

    Google Scholar 

  65. Champiat S, Ferté C, Lebel-Binay S, Eggermont A, Soria JC. Exomics and immunogenics: bridging mutational load and immune checkpoints efficacy. Oncoimmunology. 2014;3(1):e27817.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schmid P, Cruz C, Braiteh FS, Eder JP, Tolaney S, Kuter I, Nanda R, Chung C, Cassier P, Delord J-P. Atezolizumab in metastatic TNBC (mTNBC): long-term clinical outcomes and biomarker analyses: AACR; 2017.

    Google Scholar 

  67. Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau H-T, Forero-Torres A, Boccia R, Lippman ME, Somer R, Smakal M. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat. 2018;167(3):671–86.

    Article  CAS  PubMed  Google Scholar 

  68. Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, Shah NC, O’Shaughnessy J, Kalinsky K, Guarino M. Efficacy and safety of anti-Trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol. 2017;35(19):2141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Damodaran S, Symmans F, Helgason T, Mittendorf E, Tripathy D, Hess K, Litton J, Moulder S. 320TiPA phase II trial of mirvetuximab soravtansine in patients with localized triple-negative breast cancer (TNBC) with tumors predicted insensitive to standard neoadjuvant chemotherapy (NACT) including a lead-in cohort to establish activity in patients with metastatic TNBC. Ann Oncol. 2017;28(suppl_5)

    Google Scholar 

  70. Barker A, Sigman C, Kelloff G, Hylton N, Berry D, Esserman L. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther. 2009;86(1):97–100.

    Article  CAS  PubMed  Google Scholar 

  71. Rugo HS, Olopade OI, DeMichele A, Yau C, van’t Veer LJ, Buxton MB, Hogarth M, Hylton NM, Paoloni M, Perlmutter J. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. N Engl J Med. 2016;375(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nanda R, Liu MC, Yau C, Asare S, Hylton N, Veer LV, Perlmutter J, Wallace AM, Chien AJ, Forero-Torres A. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): results from I-SPY 2: American Society of Clinical Oncology, Journal of Clinical Oncology; 2017.

    Google Scholar 

  73. Moulder SL, Hess KR, Candelaria RP, Rauch GM, Santiago L, Adrada B, Yang WT, Gilcrease MZ, Huo L, Stauder MC. Precision neoadjuvant therapy (P-NAT): a planned interim analysis of a randomized, TNBC enrolling trial to confirm molecular profiling improves survival (ARTEMIS): American Society of Clinical Oncology, Journal of Clinical Oncology; 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vankina, R., Yuan, Y. (2020). Triple-Negative Breast Cancer. In: Salgia, R. (eds) Oncology in the Precision Medicine Era. Springer, Cham. https://doi.org/10.1007/978-3-030-31471-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31471-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31470-5

  • Online ISBN: 978-3-030-31471-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics