Advertisement

Networks and Context: Algorithmic Challenges for Context-Aware Social Network Research

  • Mirco SchoenfeldEmail author
  • Juergen Pfeffer
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

Social interaction is mediated by computer processes at an ever-increasing rate not least because more and more people have smartphones as their everyday and habitual companions. This enables collection of a vast amount of data containing an unprecedented richness of metadata of interaction and communication. Such context information contains valuable insights for social network research and allows for qualitative grading of network structure and consecutive structural analysis. Due to the complex, heterogeneous, dynamic, and uncertain nature of such information it is yet to be considered for network analysis tasks in its entirety. In this paper, we emphasize how network analysis benefits from considering context information and identify the key challenges that have to be tackled. From an algorithmic perspective, such challenges appear on all steps of a network analysis workflow: Dynamics and uncertainty of information affects modeling networks, calculation of general metrics, calculation of centrality rankings, graph clustering, and visualization. Ultimately, novel algorithms have to be designed to combine context data and structural information to enable future context-aware network research.

Keywords

Context awareness Social networks Network research 

References

  1. 1.
    Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014).  https://doi.org/10.1103/PhysRevE.89.032804 CrossRefGoogle Scholar
  2. 2.
    Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graphics Forum 36(1), 133–159 (2017).  https://doi.org/10.1111/cgf.12791 CrossRefGoogle Scholar
  3. 3.
    Bello, G.A., Harenberg, S., Agrawal, A., Samatova, N.F.: Community detection in dynamic attributed graphs. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q.Z. (eds.) Advanced Data Mining and Applications, pp. 329–344. Springer, Cham (2016)CrossRefGoogle Scholar
  4. 4.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970). https://doi.org/10.1145/362686.362692 zbMATHCrossRefGoogle Scholar
  5. 5.
    Boccaletti, S., Bianconi, G., Criado, R., del Genio, C., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014). https://doi.org/10.1016/j.physrep.2014.07.001 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bojchevski, A., Günnemann, S.: Bayesian robust attributed graph clustering: joint learning of partial anomalies and group structure. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)Google Scholar
  7. 7.
    Bothorel, C., Cruz, J.D., Magnani, M., Magnani, B.: Clustering attributed graphs: models, measures and methods. Netw. Sci. 3(3), 408–444 (2015).  https://doi.org/10.1017/nws.2015.9 CrossRefGoogle Scholar
  8. 8.
    Bu, Z., Gao, G., Li, H.J., Cao, J.: CAMAS: a cluster-aware multiagent system for attributed graph clustering. Inform. Fusion 37, 10–21 (2017). https://doi.org/10.1016/j.inffus.2017.01.002 CrossRefGoogle Scholar
  9. 9.
    Cheng, H., Zhou, Y., Yu, J.X.: Clustering large attributed graphs: a balance between structural and attribute similarities. ACM Trans. Knowl. Discov. Data 5(2), 12:1–12:33 (2011). https://doi.org/10.1145/1921632.1921638 MathSciNetCrossRefGoogle Scholar
  10. 10.
    De Bacco, C., Power, E.A., Larremore, D.B., Moore, C.: Community detection, link prediction, and layer interdependence in multilayer networks. Phys. Rev. E 95, 042317 (2017).  https://doi.org/10.1103/PhysRevE.95.042317 CrossRefGoogle Scholar
  11. 11.
    Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001). https://doi.org/10.1007/s007790170019 CrossRefGoogle Scholar
  12. 12.
    Domenico, M.D., Porter, M.A., Arenas, A.: MuxViz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2015).  https://doi.org/10.1093/comnet/cnu038 CrossRefGoogle Scholar
  13. 13.
    Du, Y., Gao, C., Chen, X., Hu, Y., Sadiq, R., Deng, Y.: A new closeness centrality measure via effective distance in complex networks. Chaos Interdiscip. J. Nonlinear Sci. 25(3), 033112 (2015). https://doi.org/10.1063/1.4916215 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Günnemann, S., Färber, I., Raubach, S., Seidl, T.: Spectral subspace clustering for graphs with feature vectors. In: 2013 IEEE 13th International Conference on Data Mining, pp. 231–240 (2013).  https://doi.org/10.1109/ICDM.2013.110
  15. 15.
    Gong, N.Z., Xu, W., Huang, L., Mittal, P., Stefanov, E., Sekar, V., Song, D.: Evolution of social-attribute networks: measurements, modeling, and implications using Google+ . In: Proceedings of the 2012 Internet Measurement Conference (IMC ’12), pp. 131–144. ACM, New York (2012). https://doi.org/10.1145/2398776.2398792
  16. 16.
    Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks: A Guide to Empirical Research. Campus Verlag, Frankfurt (2012)Google Scholar
  17. 17.
    Hmimida, M., Kanawati, R.: Community detection in multiplex networks: a seed-centric approach. Networks Heterog. Media 10(1), 71–85 (2015).  https://doi.org/10.3934/nhm.2015.10.71 MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hollstein, B.: Qualitative approaches. In: Scott, J., Carrington, P.J. (eds.) The SAGE Handbook of Social Network Analysis, pp. 404–416. SAGE Publications, London (2014)CrossRefGoogle Scholar
  19. 19.
    Hric, D., Peixoto, T.P., Fortunato, S.: Network structure, metadata, and the prediction of missing nodes and annotations. Phys. Rev. X 6, 031038 (2016).  https://doi.org/10.1103/PhysRevX.6.031038 Google Scholar
  20. 20.
    Hulovatyy, Y., Milenkovic, T.: Scout: simultaneous time segmentation and community detection in dynamic networks. Sci. Rep. 6, 37557 (2016)CrossRefGoogle Scholar
  21. 21.
    Hummon, N.P., Doreian, P., Freeman, L.C.: Analyzing the structure of the centrality-productivity literature created between 1948 and 1979. Knowledge 11(4), 459–480 (1990). https://doi.org/10.1177/107554709001100405 CrossRefGoogle Scholar
  22. 22.
    Javed, M.A., Younis, M.S., Latif, S., Qadir, J., Baig, A.: Community detection in networks: a multidisciplinary review. J. Netw. Comput. Appl. 108, 87–111 (2018). https://doi.org/10.1016/j.jnca.2018.02.011 CrossRefGoogle Scholar
  23. 23.
    Jeub, L.G.S., Mahoney, M.W., Mucha, P.J., Porter, M.A.: A local perspective on community structure in multilayer networks. Netw. Sci. 5(2), 144–163 (2017).  https://doi.org/10.1017/nws.2016.22 CrossRefGoogle Scholar
  24. 24.
    Karney, C.F.F.: Algorithms for geodesics. J. Geodesy 87(1), 43–55 ( 2013). https://doi.org/10.1007/s00190-012-0578-z CrossRefGoogle Scholar
  25. 25.
    Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks. In: Kumar, R., Sivakumar, D. (eds.) Algorithms and Models for the Web-Graph, pp. 62–73. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar
  26. 26.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014).  https://doi.org/10.1093/comnet/cnu016 CrossRefGoogle Scholar
  27. 27.
    Leifeld, P.: Discourse network analysis: policy debates as dynamic networks. In: The Oxford Handbook of Political Networks. Oxford University Press, Oxford (2017).  https://doi.org/10.1093/oxfordhb/9780190228217.013.25 Google Scholar
  28. 28.
    Li, J., Dani, H., Hu, X., Tang, J., Chang, Y., Liu, H.: Attributed network embedding for learning in a dynamic environment. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM ’17), pp. 387–396. ACM, New York (2017). https://doi.org/10.1145/3132847.3132919
  29. 29.
    Masci, J., Bronstein, M.M., Bronstein, A.M., Schmidhuber, J.: Multimodal similarity-preserving hashing. IEEE Trans. Pattern Anal. Mach. Intell. 36(4), 824–830 (2014).  https://doi.org/10.1109/TPAMI.2013.225 CrossRefGoogle Scholar
  30. 30.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001).  https://doi.org/10.1146/annurev.soc.27.1.415 CrossRefGoogle Scholar
  31. 31.
    Mei, Q., Cai, D., Zhang, D., Zhai, C.: Topic modeling with network regularization. In: Proceedings of the 17th International Conference on World Wide Web (WWW ’08), pp. 101–110. ACM, New York (2008). https://doi.org/10.1145/1367497.1367512
  32. 32.
    Meng, L., Hulovatyy, Y., Striegel, A., Milenković, T.: On the interplay between individuals’ evolving interaction patterns and traits in dynamic multiplex social networks. IEEE Trans. Netw. Sci. Eng. 3(1), 32–43 (2016).  https://doi.org/10.1109/TNSE.2016.2523798 CrossRefGoogle Scholar
  33. 33.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67, 026126 (2003).  https://doi.org/10.1103/PhysRevE.67.026126 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time dynamic network embeddings. In: Companion Proceedings of the Web Conference 2018 (WWW ’18), pp. 969–976. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva (2018). https://doi.org/10.1145/3184558.3191526 CrossRefGoogle Scholar
  35. 35.
    Pelechrinis, K., Wei, D.: VA-index: Quantifying assortativity patterns in networks with multidimensional nodal attributes. PLoS One 11(1), 1–13 (2016).  https://doi.org/10.1371/journal.pone.0146188 CrossRefGoogle Scholar
  36. 36.
    Pfeffer, J.: Visualization of political networks. In: Victor, J.N., Montgomery, A.H., Lubell, M. (eds.) The Oxford Handbook of Political Networks. Oxford University Press, Oxford (2017).  https://doi.org/10.1093/oxfordhb/9780190228217.013.13 Google Scholar
  37. 37.
    Rabbany, R., Eswaran, D., Dubrawski, A.W., Faloutsos, C.: Beyond assortativity: proclivity index for attributed networks (prone). In: Kim, J., Shim, K., Cao, L., Lee, J.G., Lin, X., Moon, Y.S. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 225–237. Springer, Cham (2017)CrossRefGoogle Scholar
  38. 38.
    Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.F.: Anomaly detection in dynamic networks: a survey. Wiley Interdiscip. Rev. Comput. Stat. 7(3), 223–247 (2015).  https://doi.org/10.1002/wics.1347 MathSciNetCrossRefGoogle Scholar
  39. 39.
    Schilit, W.N.: A system architecture for context-aware mobile computing. Ph.D. Thesis, Columbia University (1995)Google Scholar
  40. 40.
    Scott, J.: Social Network Analysis. Sage, Thousand Oaks (2017)Google Scholar
  41. 41.
    Sharma, R., Magnani, M., Montesi, D.: Investigating the types and effects of missing data in multilayer networks. In: 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 392–399 (2015). https://doi.org/10.1145/2808797.2808889
  42. 42.
    Snijders, T., Steglich, C., Schweinberger, M.: chap. Modeling the Coevolution of Networks and Behavior, pp. 41–71. Lawrence Erlbaum Associates Publishers, Mahwah (2007)CrossRefGoogle Scholar
  43. 43.
    Solá, L., Romance, M., Criado, R., Flores, J., García del Amo, A., Boccaletti, S.: Eigenvector centrality of nodes in multiplex networks. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033131 (2013). https://doi.org/10.1063/1.4818544 zbMATHCrossRefGoogle Scholar
  44. 44.
    Solé-Ribalta, A., De Domenico, M., Gómez, S., Arenas, A.: Centrality rankings in multiplex networks. In: Proceedings of the 2014 ACM Conference on Web Science (WebSci ’14), pp. 149–155. ACM, New York (2014). https://doi.org/10.1145/2615569.2615687
  45. 45.
    Wang, J., Liu, W., Kumar, S., Chang, S.F.: Learning to hash for indexing big data—a survey. Proc. IEEE 104(1), 34–57 (2016).  https://doi.org/10.1109/JPROC.2015.2487976 CrossRefGoogle Scholar
  46. 46.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)zbMATHCrossRefGoogle Scholar
  47. 47.
    Werner, M., Dorfmeister, F., Schönfeld, M.: Ambience: context-centric online social network. In: 12th Workshop on Positioning, Navigation and Communications (WPNC) (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bavarian School of Public PolicyTechnical University in MunichMunichGermany

Personalised recommendations