Skip to main content

A Face Recognition Workflow Based Upon Similarity Measurement

  • Conference paper
  • First Online:
Book cover Biometric Recognition (CCBR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11818))

Included in the following conference series:

  • 1651 Accesses

Abstract

In order to combine with different feature extraction methods, in this paper, we propose a new method using similarity calculation between multiple features. We regard face recognition as a maximum-a-posteriori (MAP) problem and the de-pendency between different features is defined by a markov chain. We construct a matching similarity function T which helps us finding a better matching image. Experiments were tested using AR database and the results have shown that our recognition rate is higher, especially robust to small occlusion and noise.

Yigan Li, master student main research interests: image processing face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mejda, C., Akram, E., Wajdi, B., et al.: A survey of 2D face recognition techniques. Computers 5(4), 21 (2016)

    Article  Google Scholar 

  2. Guofeng, Z., Guixia, F.U., Haitao, L.I., et al.: A survey of multi-pose face recognition. Pattern Recogn. Artif. Intell. 28(07), 613–625 (2015)

    Google Scholar 

  3. Turk, M., Pentland, A.P.: Face recognition using Eigenfaces. In: Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–591. Maui, HI, USA (1991)

    Google Scholar 

  4. Bach, F.R., Jordan, M.: Kernel independent component analysis. J. Mach. Learn. Res. 3, 1–48 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recogn. 40(3), 863–874 (2007)

    Article  Google Scholar 

  6. Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993)

    Article  Google Scholar 

  7. Lee, T.S.: Image representation using 2D gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)

    Article  Google Scholar 

  8. Baochang, Z., Gao, Y., et al.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 19(2), 533–544 (2010)

    Article  MathSciNet  Google Scholar 

  9. Yan, Y., Wang, H., Suter, D.: Multi-subregion based correlation filter bank for robust face recognition. Pattern Recogn. 47(11), 3487–3501 (2014)

    Article  Google Scholar 

  10. Samaria, F., Young, S.: HMM-based architecture for face identification. Image and Vis. Comput. 12(8), 537–543 (1994)

    Article  Google Scholar 

  11. Wu, F.: Face recognition based on wavelet transform and regional directional weighted local binary pattern. J. Multimedia 9(8), 1017–1023 (2014)

    Article  Google Scholar 

  12. Kim, D.J., Lee, S.H., Sohn, M.K.: Face recognition via local directional pattern[J]. Int. J. Secur. Appl. 7(2), 191–200 (2013)

    Google Scholar 

  13. Liu, J., Zhang, L.-S., Xu, K.-X.: Multimodal face recognition based on images fusion on feature and decision levels. Nanotechnol. Precis. Eng. 7(01), 65–70 (2009)

    Google Scholar 

  14. Huang, Z., Ren, F.: Facial expression recognition based on multi-regional D-S evidences theory fusion. IEEE J. Trans. Electric. Electron. Eng. 12(2), 251–261 (2017)

    Article  Google Scholar 

  15. Nefian, A., Hayes, M.: Face detection and recognition using hidden Markov models. In: Proceedings 1998 International Conference on Image Processing. ICIP98, pp. 141–145, vol. 1. Chicago, IL, USA (1998)

    Google Scholar 

  16. Miar-Naimi, H., Davari, P.: A new fast and efficient HMM-based face recognition system using a 7-State HMM along with SVD coefficients. Iran. J. Electric. Electron. Eng. 4(1), 46–57 (2008)

    Google Scholar 

  17. Fuji, R., Yanqiu, L.I., Min, H.U., et al.: Face recognition method based on multi-features description and local fusion classification decision. Opto-Electron. Eng. 43(09), 1–8 (2016)

    Google Scholar 

  18. Soodeh, N., Majid, A.: A modified technique for face recognition under degraded conditions. Vis. Commun. Image Representation 55, 742–755 (2018)

    Article  Google Scholar 

  19. Jing, L.I., Tao, Q., Chang, W., et al.: Robust face recognition using the deep C2D-CNN model based on decision-level fusion. Sensors 18(7), 2080 (2018)

    Article  Google Scholar 

  20. Hoda, M., Amirhossein, S., Benyamin, G.: Pixel-level alignment of facial images for high accuracy recognition using ensemble of patches. Journal of the Optical Society of America 35(7), 1149 (2018)

    Article  Google Scholar 

  21. Kittler, J., Hatef, M., Duin, R.P.W., et al.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (2002)

    Article  Google Scholar 

  22. Nandakumar, K., Chen, Y., Dass, S.C., et al.: Likelihood ratio-based biometric score fusion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 342–347 (2007)

    Article  Google Scholar 

  23. Ma, A.J., Yuen, P.C., Lai, J.H.: Linear dependency modeling for classifier fusion and feature combination. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1135–1148 (2013)

    Article  Google Scholar 

  24. Prabhakar, S., Jain, A.K.: Decision-level fusion in fingerprint verification. Pattern Recogn. 35(4), 861–874 (2002)

    Article  Google Scholar 

  25. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, pp. 177–196. Wiley, New Jersey (2000)

    MATH  Google Scholar 

  26. Terrades, O.R., Valveny, E., Tabbone, S.: Optimal classifier fusion in a non-bayesian probabilistic framework. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1630–1644 (2009)

    Article  Google Scholar 

  27. Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. In: Proceedings IEEE International Conference Computer Vision, pp. 221–228 (2009)

    Google Scholar 

  28. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via column generation. Mach. Learn. Res. 46(1–3), 225–254 (2002)

    Article  Google Scholar 

  29. Huang, G.B., Ramesh, M., Berg, T., et al.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments, pp. 07–49. University of Massachusetts, Amherst, Technical Report (2007)

    Google Scholar 

  30. Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification (2014)

    Google Scholar 

  31. Taigman, Y., Yang, M., Ranzato, M., et al.: DeepFace: closing the gap to human-level performance in face verification. In: Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society (2014)

    Google Scholar 

  32. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on. IEEE Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  33. Chen, D., Cao, X., Wen, F., et al.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2013)

    Google Scholar 

  34. Déniz, O., Bueno, G., Salido, J., et al.: Face recognition using histograms of oriented gradients. Pattern Recogn. Lett. 32(12), 1598–1603 (2011)

    Article  Google Scholar 

  35. Liao, S., Jain, A.K., Li, S.Z.: Partial face recognition: alignment-free approach. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1193–1205 (2013)

    Article  Google Scholar 

  36. Biao, T., Wei, J., Randi, F., et al.: Face recognition using decision fusion of multiple sparse representation-based classifiers[J]. Telecommun. Sci. 34(4), 31–40 (2018)

    Google Scholar 

  37. Huang, G.B., Ramesh, M., Berg, T., et al.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Wang, Z. (2019). A Face Recognition Workflow Based Upon Similarity Measurement. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds) Biometric Recognition. CCBR 2019. Lecture Notes in Computer Science(), vol 11818. Springer, Cham. https://doi.org/10.1007/978-3-030-31456-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31456-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31455-2

  • Online ISBN: 978-3-030-31456-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics