Skip to main content

Advanced Vestibular Rehabilitation

  • 436 Accesses

Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Vestibular rehabilitation is a critical tool facilitating recovery after peripheral or central vestibular deficits. In this chapter, we will discuss state-of-the-art clinical practice strategies. We will focus on incremental vestibular ocular reflex (VOR) adaptation, with specific focus on the influence of training target contrast on the adaptive process, the influence of position and velocity error signals driving the adaptive process, and the role of active versus passive head rotation. We will then discuss the important effects of aging on VOR adaptation. Finally, we will summarize new developments in vestibular rehabilitation and provide a succinct review of vestibular rehabilitation in atypical medical populations.

Keywords

  • VOR adaptation
  • Incremental velocity error signal
  • Head impulse
  • Active head rotation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-31407-1_9
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-31407-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Agrawal, Y., Carey, J. P., Della Santina, C. C., Schubert, M. C., & Minor, L. B. (2009). Disorders of balance and vestibular function in US adults: Data from the National Health and Nutrition Examination Survey, 2001–2004. Archives of Internal Medicine, 169, 938–944.

    PubMed  Google Scholar 

  • Alahmari, K. A., Sparto, P. J., Marchetti, G. F., Redfern, M. S., Furman, J. M., & Whitney, S. L. (2014). Comparison of Virtual Reality Based Therapy with Customized Vestibular Physical Therapy for the Treatment of Vestibular Disorders. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 389–399. PMCID: PMC5527704.

    PubMed  PubMed Central  Google Scholar 

  • Alvarez, J. C., Díaz, C., Suárez, C., Fernández, J. A., González del Rey, C., Navarro, A., & Tolivia, J. (1998). Neuron loss in human medial vestibular nucleus. The Anatomical Record, 251, 431–438.

    CAS  PubMed  Google Scholar 

  • Andersen, B. B., Gundersen, H. J., & Pakkenberh, B. (2003). Ageing of the human cerebellum: A stereological study. The Journal of Comparative Neurology, 466, 356–365.

    PubMed  Google Scholar 

  • Aw, S. T., Halmagyi, G. M., Haslwanter, T., Curthoys, I. S., Yavor, R. A., & Todd, M. J. (1996). Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. II. Responses in subjects with unilateral vestibular loss and selective semicircular canal occlusion. Journal of Neurophysiology, 76, 4021–4030.

    CAS  PubMed  Google Scholar 

  • Bergstrom, B. (1973). Morphology of the vestibular nerve: Part II- the number of myelinated vestibular nerve fibers in man at various ages. Acta Oto-Laryngologica, 76, 173–179.

    CAS  PubMed  Google Scholar 

  • Binetti, A. C., Varela, A. X., Lucarelli, D. L., & Verdecchia, D. H. (2017). Unilateral head impulses training in uncompensated vestibular hypofunction. Case Reports in Otolaryngology, 2017, 2145173. PMID: 28243476.

    PubMed  PubMed Central  Google Scholar 

  • Büttner, U., & Büttner-Ennever, J. A. (2006). Present concepts of oculomotor organization. Progress in Brain Research, 151, 1–42.

    PubMed  Google Scholar 

  • Cohen, B., Henn, V., Raphan, T., & Dennett, D. (1981). Velocity storage, nystagmus, and visual-vestibular interactions in humans. Annals of the New York Academy of Sciences, 374, 421–433.

    CAS  PubMed  Google Scholar 

  • Crane, B. T., & Schubert, M. C. (2018). An adaptive vestibular rehabilitation technique. The Laryngoscope, 128(3), 713–718. PMID: 28543062.

    PubMed  Google Scholar 

  • Fadaee, S. B., & Migliaccio, A. A. (2016). The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation. Experimental Brain Research, 234(4), 1085–1094.

    PubMed  Google Scholar 

  • Gauthier, G. M., & Robinson, D. A. (1975). Adaptation of the human vestibuloocular reflex to magnifying lenses. Brain Research, 92, 331–335.

    CAS  PubMed  Google Scholar 

  • Gonshor, A., & Jones, G. M. (1976). Short-term adaptive changes in the human vestibulo-ocular reflex arc. Journal of Physiology, 256, 361–379.

    CAS  Google Scholar 

  • Gimmon Y, Migliaccio AA, Todd C, Figtree W, Schubert MC. (2018). Simultaneous laterally-inversive vestibulo-ocular reflex adaptation during head impulses. American Physical Therapy Association, combined sections meeting, New Orleans, LA.

    Google Scholar 

  • Hall, C. D., Schubert, M. C., & Herdman, S. J. (2004). Prediction of fall risk reduction as measured by dynamic gait index in individuals with unilateral vestibular hypofunction. Otology & Neurotology, 25(5), 746–751.

    Google Scholar 

  • Hall, C. D., Herdman, S. J., Whitney, S. L., Cass, S. P., Clendaniel, R. A., Fife, T. D., Furman, J. M., Getchius, T. S., Goebel, J. A., Shepard, N. T., & Woodhouse, S. N. (2016). Vestibular rehabilitation for peripheral vestibular hypofunction: An evidence-based clinical practice guideline: From the American Physical Therapy Association Neurology Section. Journal of Neurologic Physical Therapy, 40(2), 124–155. PMID: 26913496.

    PubMed  PubMed Central  Google Scholar 

  • Hall, T. C., Miller, A. K. H., Corsellis, J. A. N. (1975). Variation in the human purkinje cell population according to age and sex. Neuropathol Appl Neurobiol, 1, 267–292.

    Google Scholar 

  • Halmagyi, G. M., & Curthoys, I. S. (1988). A clinical sign of canal paresis. Archives of Neurology, 45, 737–739.

    CAS  PubMed  Google Scholar 

  • Halmagyi, G. M., Curthoys, I. S., Cremer, P. D., Todd, M. J., & Curthoys, I. S. (1990). The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy. Experimental Brain Research, 81, 479–490.

    CAS  PubMed  Google Scholar 

  • Hattori, K., Watanabe, S., Nakamura, T., & Kato, I. (2000). Flexibility in the adaptation of the vestibulo-ocular reflex to modified visual inputs in humans. Nihon Jibiinkoka Gakkai Kaiho, 103, 1186–1194.

    CAS  PubMed  Google Scholar 

  • Herdman, S. J., Schubert, M. C., Das, V. E., & Tusa, R. J. (2003). Recovery of dynamic visual acuity in unilateral vestibular hypofunction. Archives of Otolaryngology – Head & Neck Surgery, 129(8), 819–824.

    Google Scholar 

  • Herdman, S. J., Hall, C. D., Schubert, M. C., Das, V. E., & Tusa, R. J. (2007). Recovery of dynamic visual acuity in bilateral vestibular hypofunction. Archives of Otolaryngology – Head & Neck Surgery, 133(4), 383–389.

    Google Scholar 

  • Hillier, S. L., & McDonnell, M. (2011). Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database of Systematic Reviews, (2), CD005397. https://doi.org/10.1002/14651858.CD005397.pub3.

  • Hillier, S., & McDonnell, M. (2016). Is vestibular rehabilitation effective in improving dizziness and function after unilateral peripheral vestibular hypofunction? An abridged version of a Cochrane Review. European Journal of Physical and Rehabilitation Medicine, 52, 541–556.

    PubMed  Google Scholar 

  • Hilton, M., & Pinder, D. (2004). The Epley (canalith repositioning) manoeuvre for benign paroxysmal positional vertigo. Cochrane Database of Systematic Reviews, (2), CD003162. Review. Update in: Cochrane Database Syst Rev. 2014;12: CD003162.

    Google Scholar 

  • Huang, K., Sparto, P. J., Kiesler, S., Siewiorek, D. P., & Smailagic, A. (2014). iPod-based in-home system for monitoring gaze-stabilization exercise compliance of individuals with vestibular hypofunction. Journal of Neuroengineering and Rehabilitation, 11, 69. https://doi.org/10.1186/1743-0003-11-69.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hübner, P. P., Khan, S. I., & Migliaccio, A. A. (2015). The mammalian efferent vestibular system plays a crucial role in the high-frequency response and short-term adaptation of the vestibulo-ocular reflex. Journal of Neurophysiology, 114(6), 3154–3165.

    PubMed  PubMed Central  Google Scholar 

  • Hübner, P. P., Khan, S. I., & Migliaccio, A. A. (2017). The mammalian efferent vestibular system plays a crucial role in vestibulo-ocular reflex compensation after unilateral labyrinthectomy. Journal of Neurophysiology, 117(4), 1553–1568.

    PubMed  PubMed Central  Google Scholar 

  • Ishiyama, G. (2009). Imbalance and vertigo: The aging human vestibular periphery. Seminars in Neurology, 29, 491–499.

    PubMed  Google Scholar 

  • Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex—Around the flocculus hypothesis. Annual Review of Neuroscience, 5, 275–296.

    CAS  PubMed  Google Scholar 

  • Jacobson, G. P., McCaslin, D. L., Grantham, S. L., & Piker, E. G. (2008). Significant vestibular system impairment is common in a cohort of elderly patients referred for assessment of falls risk. Journal of the American Academy of Audiology, 19, 799–807.

    PubMed  Google Scholar 

  • Johnsson, L. G. (1971). Degenerative changes and anomalies of the vestibular system in man. Laryngoscope, 81, 1682–1694.

    CAS  PubMed  Google Scholar 

  • Khan, S. I., Hübner, P. P., Brichta, A. M., Smith, D. W., & Migliaccio, A. A. (2017). Ageing reduces the high-frequency and short-term adaptation of the vestibulo-ocular reflex in mice. Neurobiology of Aging, 51, 122–131.

    PubMed  Google Scholar 

  • Koganemaru, S., Goto, F., Arai, M., Toshikuni, K., Hosoya, M., Wakabayashi, T., Yamamoto, N., Minami, S., Ikeda, S., Ikoma, K., & Mima, T. (2017). Effects of vestibular rehabilitation combined with transcranial cerebellar direct current stimulation in patients with chronic dizziness: An exploratory study. Brain Stimulation, 10(3), 576–578.

    PubMed  Google Scholar 

  • Kording, K. P., Tenenbaum, J. B., & Shadmehr, R. (2007). The dynamics of memory as a consequence of optimal adaptation to a changing body. Nature Neuroscience, 10(6), 779–786. Epub 2007 May 13..

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lisberger, S. G., & Pavelko, T. A. (1986). Vestibular signals carried by pathways subserving plasticity of the vestibulo-ocular reflex in monkeys. The Journal of Neuroscience, 6, 346–354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lisberger, S. G., & Fuchs, A. F. (1978). Role of primate flocculus during rapid behavioral modification of vestibule-ocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. Journal of Neurophysiology, 41, 733–763.

    CAS  PubMed  Google Scholar 

  • Lopez, I., Honrubia, V., & Baloh, R. W. (1997). Ageing and the human vestibular nucleus. Journal of Vestibular Research, 7, 77–85.

    CAS  PubMed  Google Scholar 

  • Lotfi, Y., Rezazadeh, N., Moossavi, A., Haghgoo, H. A., Rostami, R., Bakhshi, E., Badfar, F., Moghadam, S. F., Sadeghi-Firoozabadi, V., & Khodabandelou, Y. (2017). Preliminary evidence of improved cognitive performance following vestibular rehabilitation in children with combined ADHD (cADHD) and concurrent vestibular impairment. Auris, Nasus, Larynx, 44(6), 700–707. PMID: 28238393.

    PubMed  Google Scholar 

  • Mahfuz, M. M., Schubert, M. C., Todd, C. J., Figtree, W. V. C., Khan, S. I., & Migliaccio, A. A. (2017). The effect of visual contrast on human vestibulo-ocular reflex training. Journal of the Association for Research in Otolaryngology, 19(1), 113–122.

    Google Scholar 

  • Mahfuz, M. M., Schubert, M. C., Figtree, W. V. C., Todd, C. J., Khan, S. I., & Migliaccio, A. A. (2018). Optimal human passive vestibulo-ocular reflex adaptation does not rely on passive training. Journal of the Association for Research in Otolaryngology, 19(3), 261–271.

    PubMed  PubMed Central  Google Scholar 

  • Matiño-Soler, E., Esteller-More, E., Martin-Sanchez, J. C., Martinez-Sanchez, J. M., & Perez-Fernandez, N. (2015). Normative data on angular vestibule-ocular responses in the yaw axis measured using the video head impulse test. Otology & Neurotology, 36, 466–471.

    Google Scholar 

  • Matsugi, A., Ueta, Y., Oku, K., Okuno, K., Tamaru, Y., Nomura, S., Tanaka, H., & Mori, N. (2017). Effect of gaze-stabilization exercises on vestibular function during postural control. Neuroreport, 28, 439–443.

    PubMed  Google Scholar 

  • McDonnell, M. N., & Hillier, S. L. (2015). Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database of Systematic Reviews, 1, CD005397. https://doi.org/10.1002/14651858.CD005397.pub4.

    CrossRef  Google Scholar 

  • Meldrum, D., Herdman, S., Moloney, R., Murray, D., Duffy, D., Malone, K., French, H., Hone, S., Conroy, R., & McConn-Walsh, R. (2012). Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial. BMC Ear, Nose and Throat Disorders, 12, 3. https://doi.org/10.1186/1472-6815-12-3.

    CrossRef  Google Scholar 

  • Merchant, S. N., Velazquez-Villasenor, L., Tsuji, K., Glynn, R. J., Wall, C., & Rauch, S. D. (2000). Temporal bone studies of the human peripheral vestibular system. Normative vestibular hair cell data. The Annals of Otology, Rhinology, and Laryngology, 181, 3–13.

    CAS  Google Scholar 

  • Meyer, C. H., Lasker, A. G., & Robinson, D. A. (1985). The upper limit of human smooth pursuit velocity. Vision Research, 25, 561–563.

    CAS  PubMed  Google Scholar 

  • Micarelli, A., Viziano, A., Augimeri, I., Micarelli, D., & Alessandrini, M. (2017). Three-dimensional head-mounted gaming task procedure maximizes effects of vestibular rehabilitation in unilateral vestibular hypofunction: A randomized controlled pilot trial. International Journal of Rehabilitation Research, 40(4), 325–332. PMID: 28723718.

    PubMed  Google Scholar 

  • Migliaccio, A. A., & Schubert, M. C. (2013). Unilateral adaptation of the human angular vestibulo-ocular reflex. Journal of the Association for Research in Otolaryngology, 14(1), 29–36.

    PubMed  Google Scholar 

  • Migliaccio, A. A., & Schubert, M. C. (2014). Pilot study of a new rehabilitation tool: Improved unilateral short-term adaptation of the human angular vestibulo-ocular reflex. Otology & Neurotology, 35(10), e310–e316.

    Google Scholar 

  • Mitsutake, T., Sakamoto, M., Ueta, K., Oka, S., & Horikawa, E. (2017). Effects of vestibular rehabilitation on gait performance in poststroke patients: A pilot randomized controlled trial. International Journal of Rehabilitation Research, 40(3), 240–245. PMID: 28542112.

    PubMed  Google Scholar 

  • Mulavara Fiedler, M. J., Kofman, I. S., Wood, S. J., Serrador, J. M., Peters, B., Cohen, H. S., Reschke, M. F., & Bloomberg, J. J. (2011). Improving balance function using vestibular stochastic resonance: Optimizing stimulus characteristics. Experimental Brain Research, 210, 303–312. PMID: 21442221.

    PubMed  Google Scholar 

  • Neuhauser, H. K., & Lempert, T. (2009). Vertigo: epidemiologic aspects. Semin Neurol, 29, 473–481. Ogata R, Ikari K, Hayashi M, Tamai K. Age related changes in the Purkinje’s cells in the rat cerebellar cortex: a quantitative electron microscopic study. Folia Psychiatrica et Neurologica Japonica 1984;38.159–67.

    PubMed  Google Scholar 

  • Paige, G. D., & Sargent, E. W. (1991). Visually-induced adaptive plasticity in the human vestibulo-ocular reflex. Experimental Brain Research, 84(1), 25–34.

    CAS  PubMed  Google Scholar 

  • Pal, S., Rosengren, S. M., & Colebatch, J. G. (2009). Stochastic galvanic vestibular stimulation produces a small reduction in sway in Parkinson’s disease. Journal of Vestibular Research, 19, 137–142.

    PubMed  Google Scholar 

  • Park, J. J., Tang, Y., Lopez, I., & Ishiyama, A. (2001). Age-related change in the number of neurons in the human vestibular ganglion. The Journal of Comparative Neurology, 431, 437–443.

    CAS  PubMed  Google Scholar 

  • Prestori, F., Bonardi, C., Mapelli, L., Lombardo, P., Goselink, R., De Stefano, M. E., Gandolfi, D., Mapelli, J., Bertrand, D., Schonewille, M., De Zeeuw, C., & D'Angelo, E. (2013). Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage. PLoS One, 8, e64828.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rauch, S. D., Velazquez-Villasenor, L., Dimitri, P. S., & Merchant, S. N. (2001). Decreasing hair cell counts in aging humans. Annals of the New York Academy of Sciences, 942, 220–227.

    CAS  PubMed  Google Scholar 

  • Richter, E. (1980). Quantitative study of human Scarpa’s ganglion and vestibular sensory epithelia. Acta Oto-Laryngologica, 90, 199–208.

    CAS  PubMed  Google Scholar 

  • Rogers, J., Zornetzer, S. F., Bloom, F. E., & Mervis, R. E. (1984). Senescent microstructural changes in rat cerebellum. Brain Research, 292, 23–32.

    CAS  PubMed  Google Scholar 

  • Rosenhall, U. (1973). Degenerative patterns in the aging human vestibular neuro-epithelia. Acta Oto-Laryngologica, 76, 208–220.

    CAS  PubMed  Google Scholar 

  • Ross, M. D., Peacor, D., Johnsson, L. G., & Allard, L. F. (1976). Observation on normal and degenerating human otoconia. The Annals of Otology, Rhinology, and Laryngology, 85, 310–326.

    CAS  PubMed  Google Scholar 

  • Schonewille, M., Gao, Z., Boele, H. J., Veloz, M. F., Amerika, W. E., Simek, A. A., De Jeu, M. T., Steinberg, J. P., Takamiya, K., Hoebeek, F. E., Linden, D. J., Huganir, R. L., & De Zeeuw, C. I. (2011). Reevaluating the role of LTD in cerebellar motor learning. Neuron, 70, 43–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert, M. C., Migliaccio, A. A., & Della Santina, C. C. (2006). Modification of compensatory saccades after VOR gain recovery. Journal of Vestibular Research, 16, 285–291.

    PubMed  PubMed Central  Google Scholar 

  • Schubert, M. C., Migliaccio, A. A., Clendaniel, R. A., Allak, A., & Carey, J. P. (2008a). Mechanism of dynamic visual acuity recovery with vestibular rehabilitation. Archives of Physical Medicine and Rehabilitation, 89(3), 500–507. PMID: 18295629.

    PubMed  PubMed Central  Google Scholar 

  • Schubert, M. C., Della Santina, C. C., & Shelhamer, M. (2008b). Incremental angular vestibulo-ocular reflex adaptation to active head rotation. Experimental Brain Research, 191(4), 435–446. PMID: 18712370.

    PubMed  PubMed Central  Google Scholar 

  • Schubert, M. C., Migliaccio, A. A., Minor, L. B., & Clendaniel, R. A. (2008c). Retention of VOR gain following short-term VOR adaptation. Experimental Brain Research, 187, 117–127.

    PubMed  PubMed Central  Google Scholar 

  • Serrador, J. M., Deegan, B. M., Geraghty, M. C., & Wood, S. J. (2018). Enhancing vestibular function in the elderly with imperceptible electrical stimulation. Scientific Reports, 8(1), 336. PMID: 29321511.

    PubMed  PubMed Central  Google Scholar 

  • Shelhamer, M., Robinson, D. A., & Tan, H. S. (1992). Context-specific adaptation of the gain of the vestibulo-ocular reflex in humans. Journal of Vestibular Research, 2, 89–96.

    CAS  PubMed  Google Scholar 

  • Shelhamer, M., Tiliket, C., Roberts, D., Kramer, P. D., & Zee, D. S. (1994). Short-term vestibulo-ocular reflex adaptation in humans. II. Error signals. Experimental Brain Research, 100, 328–336.

    CAS  PubMed  Google Scholar 

  • Solomon, D., Zee, D. S., & Straumann, D. (2003). Torsional and horizontal vestibular ocular reflex adaptation: Three-dimensional eye movement analysis. Experimental Brain Research, 152, 150–155.

    CAS  PubMed  Google Scholar 

  • Sugaya, N., Arai, M., & Goto, F. (2017). Is the headache in patients with vestibular migraine attenuated by vestibular rehabilitation? Frontiers in Neurology, 8, 124.

    PubMed  PubMed Central  Google Scholar 

  • Sumnall, J. H., Freeman, T. C., & Snowden, R. J. (2003). Optokinetic potential and the perception of head-centred speed. Vision Research, 43, 1709–1718.

    PubMed  Google Scholar 

  • Shayman, C. S., Earhart, G. M., & Hullar, T. E. (2017). Improvements in gait with hearing aids and cochlear implants. Otology & Neurotology, 38(4), 484–486. PMID:28187057.

    Google Scholar 

  • Smaerup, M., Grönvall, E., Larsen, S. B., Laessoe, U., Henriksen, J. J., & Damsgaard, E. M. (2017). Exercise gaming – A motivational approach for older adults with vestibular dysfunction. Disability and Rehabilitation. Assistive Technology, 12(2), 137–144. Epub 2016 Jan 4.

    CAS  PubMed  Google Scholar 

  • Titley, H. K., & Hansel, C. (2016). Asymmetries in cerebellar plasticity and motor learning. Cerebellum, 15, 87–92.

    PubMed  PubMed Central  Google Scholar 

  • Thompson, P. (1982). Perceived rate of movement depends on contrast. Vision Research, 22, 377–380.

    CAS  PubMed  Google Scholar 

  • Thompson, P. (1983). Discrimination of moving gratings at and above detection threshold. Vision Research, 23, 1533–1538.

    CAS  PubMed  Google Scholar 

  • Todd, C. J., Hübner, P. P., Hübner, P., Schubert, M. C., & Migliaccio, A. A. (2018). StableEyes – A Portable vestibular rehabilitation device. IEEE Trans Neural Syst Rehabil Eng. 2018 Jun;26. (6):1223–1232. https://doi.org/10.1109/TNSRE.2018.2834964. PMID: 29877847.

  • Velazquez-Villasenor, L., Merchant, S. N., Tsuji, K., Glynn, R. J., Wall, C., 3rd, & Rauch, S. D. (2000). Temporal bone studies of the human peripheral vestibular system. Normative Scarpa’s ganglion cell data. The Annals of Otology, Rhinology, and Laryngology, 181, 14–19.

    CAS  Google Scholar 

  • Vitkovic, J., Winoto, A., Rance, G., Dowell, R., & Paine, M. (2013). Vestibular rehabilitation outcomes in patients with and without vestibular migraine. Journal of Neurology, 260(12), 3039–3048. PMID: 24061769.

    PubMed  Google Scholar 

  • Waddington, J., & Harris, C. M. (2015). Human optokinetic nystagmus and spatial frequency. Journal of Vision, 15, 7. https://doi.org/10.1167/15.13.7.

    CrossRef  PubMed  Google Scholar 

  • Whitney, S. L., Wrisley, D. M., Brown, K. E., & Furman, J. M. (2000). Physical therapy for migraine-related vestibulopathy and vestibular dysfunction with history of migraine. The Laryngoscope, 110(9), 1528–1534. PMID: 10983955.

    CAS  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Foy, M. R., Akopian, G. G., Lee, K. H., Zach, J., Nguyen, K. P., Comalli, D. M., Kennard, J. A., Agelan, A., & Thompson, R. F. (2010). Differential effects and rates of normal aging in cerebellum and hippocampus. Proceedings of the National Academy of Sciences, 107, 1624–1629.

    CAS  Google Scholar 

  • Wuehr, M., Nusser, E., Decker, J., Krafczyk, S., Straube, A., Brandt, T., Jahn, K., & Schniepp, R. (2016). Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology, 86(23), 2196–2202.

    PubMed  Google Scholar 

  • Yakushin, S. B., Raphan, T., & Cohen, B. (2003). Gravity-specific adaptation of the angular vestibuloocular reflex: Dependence on head orientation with regard to gravity. Journal of Neurophysiology, 89, 571–586.

    PubMed  Google Scholar 

  • Yuan, R., Tsaih, S. W., Petkova, S. B., Marin de Evsikova, C., Xing, S., Marion, M. A., Bogue, M. A., Mills, K. D., Peters, L. L., Bult, C. J., Rosen, C. J., Sundberg, J. P., Harrison, D. E., Churchill, G. A., & Paigen, B. (2009). Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell, 8, 277–287.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Zhu, Q., & Hua, T. (2010). Aging of cerebellar Purkinje cells. Cell and Tissue Research, 341, 341–347.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Migliaccio, A.A., Schubert, M.C. (2019). Advanced Vestibular Rehabilitation. In: Shaikh, A., Ghasia, F. (eds) Advances in Translational Neuroscience of Eye Movement Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-31407-1_9

Download citation