Skip to main content

Methane

  • Chapter
  • First Online:
  • 2321 Accesses

Abstract

Methane is the most widely known greenhouse gas emitted from permafrost areas. The major sources are: wetland ecosystem emission, emission from thawed old carbon from permafrost, and deeper sources, including intra-permafrost and below-permafrost free gas reservoirs and gas hydrates. The hydrate source occurs mainly at the base of the permafrost at depths below ~200 m and is unlikely to be disturbed by permafrost warming on a time scale of centuries. However, shallower hydrates have been reported from boreholes. Free gas reservoirs are also known from taliks. Permafrost acts as a ‘lid’ on deeper methane sources, but with permafrost warming this lid will be increasingly leaky, in particular in areas of thin continuous and discontinuous permafrost that show rapid warming. One of these areas is Northwestern Siberia, from which a new phenomenon has been reported: explosive crater formation with emission of CH4. The chapter concludes with a perspective on CH4 emission in comparison with other greenhouse gases. CO2 dominates emission from thawing permafrost. However, CH4 emission from shallow intrapermafrost gas reservoirs is poorly quantified, and ecosystem CH4 emission can react fast on changes in the Arctic climate system, such as sea ice decline. Next, N2O may become an increasingly important greenhouse gas, related to increasing erosion phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob Chang Biol 21(12):4570–4587

    Article  Google Scholar 

  • AMAP (2017) Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 269 pp

    Google Scholar 

  • Andresen CG, Lara MJ, Tweedie CE, Lougheed VL (2017) Rising plant‐mediated methane emissions from arctic wetlands. Glob Chang Biol 23(3):1128–1139

    Article  Google Scholar 

  • Archer D, Buffett B, Brovkin V (2009) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci 106(49):20596–20601

    Article  Google Scholar 

  • Babkina E, Khomutov A, Leibman M, Dvornikov Y, Kizyakov A, Babkin E (2017) Paragenesis of thermal denudation with gas-emission crater and lake formation, Yamal Peninsula, Russia. In: EGU General Assembly Conference Abstracts, 2017. p 6026

    Google Scholar 

  • Beauchamp B (2004) Natural gas hydrates: myths, facts and issues. Compt Rendus Geosci 336(9):751–765

    Article  Google Scholar 

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215

    Article  Google Scholar 

  • Brook E, Archer D, Frolking S, Lawrence D (2008) Potential for abrupt changes in atmospheric methane. U.S. Climate Change Science Program Synthesis and Assessment Product 3.4: Abrupt Climate Change. U.S. Climate Change Science Program and the Subcommittee on Global Change Research, U.S. Geological Survey, Reston VA

    Google Scholar 

  • Brouchkov A, Fukuda M (2002) Preliminary measurements on methane content in permafrost, central Yakutia, and some experimental data. Permafr Periglac Process 13(3):187–197. https://doi.org/10.1002/ppp.422

    Article  Google Scholar 

  • Buffett BA, Zatsepina OY (1999) Metastability of gas hydrate. Geophys Res Lett 26(19):2981–2984

    Article  Google Scholar 

  • Buldovicz SN, Khilimonyuk VZ, Bychkov AY, Ospennikov EN, Vorobyev SA, Gunar AY, Gorshkov EI, Chuvilin EM, Cherbunina MY, Kotov PI (2018) Cryovolcanism on the Earth: origin of a spectacular crater in the Yamal peninsula (Russia). Sci Rep 8(1):13534

    Article  Google Scholar 

  • Chadburn SE, Burke E, Cox P, Friedlingstein P, Hugelius G, Westermann S (2017b) An observation-based constraint on permafrost loss as a function of global warming. Nat Clim Chang 7(5):340

    Article  Google Scholar 

  • Collett TS, Johnson A, Knapp CC, Boswell R (2010) Natural gas hydrates: energy resource potential and associated geologic hazards, AAPG Memoir 89, vol 89. AAPG

    Google Scholar 

  • Collett TS, Lee MW, Agena WF, Miller JJ, Lewis KA, Zyrianova MV, Boswell R, Inks TL (2011) Permafrost-associated natural gas hydrate occurrences on the Alaska north slope. Mar Pet Geol 28(2):279–294

    Article  Google Scholar 

  • Dlugokencky E, Bruhwiler L, White J, Emmons L, Novelli PC, Montzka SA, Masarie KA, Lang PM, Crotwell A, Miller JB (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett 36(18):L18803. https://doi.org/10.1029/2009GL03978

    Article  Google Scholar 

  • Dmitrenko IA, Kirillov SA, Tremblay LB, Kassens H, Anisimov OA, Lavrov SA, Razumov SO, Grigoriev MN (2011) Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. J Geophys Res Oceans 116(C10):C10027. https://doi.org/10.1029/2011JC007218

    Article  Google Scholar 

  • Elberling B, Christiansen HH, Hansen BU (2010) High nitrous oxide production from thawing permafrost. Nat Geosci 3(5):332

    Article  Google Scholar 

  • Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49(8):777–789

    Article  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on earth. Rev Geophys 51(2):276–299

    Article  Google Scholar 

  • Frederick J, Buffett B (2014) Taliks in relict submarine permafrost and methane hydrate deposits: pathways for gas escape under present and future conditions. J Geophys Res Earth 119(2):106–122

    Article  Google Scholar 

  • Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3(2):331–341

    Article  Google Scholar 

  • Hausmann P, Sussmann R, Smale D (2016) Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): top–down estimate from ethane and methane column observations. Atmos Chem Phys 16(5):3227–3244

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson C (2001) Climate change 2001: the scientific basis. The Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  • Juncher Jørgensen C, Lund Johansen KM, Westergaard-Nielsen A, Elberling B (2014) Net regional methane sink in high Arctic soils of Northeast Greenland. Nat Geosci 8(1):20–23. https://doi.org/10.1038/ngeo2305

    Article  Google Scholar 

  • Khvorostyanov D, Krinner G, Ciais P, Heimann M, Zimov S (2008a) Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B Chem Phys Meteorol 60(2):250–264

    Article  Google Scholar 

  • Khvorostyanov D, Ciais P, Krinner G, Zimov S, Corradi C, Guggenberger G (2008b) Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus B Chem Phys Meteorol 60(2):265–275

    Article  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813

    Article  Google Scholar 

  • Kittler F, Heimann M, Kolle O, Zimov N, Zimov S, Göckede M (2017) Long‐term drainage reduces CO2 uptake and CH4 emissions in a Siberian permafrost ecosystem. Glob Biogeochem Cycles 31:1704–1717. https://doi.org/10.1002/2017GB005774

    Article  Google Scholar 

  • Kizyakov A, Zimin M, Sonyushkin A, Dvornikov Y, Khomutov A, Leibman M (2017) Comparison of gas emission crater Geomorphodynamics on Yamal and Gydan peninsulas (Russia), based on repeat very-high-resolution stereopairs. Remote Sens 9(10):1023

    Article  Google Scholar 

  • Kizyakov A, Khomutov A, Zimin M, Khairullin R, Babkina E, Dvornikov Y, Leibman M (2018) Microrelief associated with gas emission craters: remote-sensing and field-based study. Remote Sens 10(5):677

    Article  Google Scholar 

  • Kohnert K, Serafimovich A, Metzger S, Hartmann J, Sachs T (2017) Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Sci Rep 7(1):5828

    Article  Google Scholar 

  • Kraev GN, Schultze ED, Rivkina EM (2013) Cryogenesis as a factor of methane distribution in layers of permafrost. Dokl Earth Sci 451(2):882–885. https://doi.org/10.1134/s1028334x13080291

    Article  Google Scholar 

  • Kraev G, Schulze E-D, Yurova A, Kholodov A, Chuvilin E, Rivkina E (2017) Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 8(6):105

    Article  Google Scholar 

  • Kraev G, Rivkina E, Vishnivetskaya T, Belonosov A, van Huissteden J, Kholodov A, Smirnov A, Kudryavtsev A, Teshebaeva K, Zamolodchikov D (2019) Methane in gas shows from boreholes in epigenetic permafrost of Siberian Arctic. Geosciences 9(2):67

    Article  Google Scholar 

  • Kroon P, Hensen A, Jonker H, Zahniser M, Veen WVT, Vermeulen A (2007) Suitability of quantum cascade laser spectroscopy for CH4 and N2O eddy covariance flux measurements. Biogeosciences 4(5):715–728

    Article  Google Scholar 

  • Kvenvolden KA (1988) Methane hydrates and global climate. Glob Biogeochem Cycles 2(3):221–229

    Article  Google Scholar 

  • Kvenvolden KA, Lorenson TD (2001) The global occurrence of natural gas hydrate. Nat Gas Hydrates Occurrence, Distrib Detect 124:3–18

    Google Scholar 

  • Kwon MJ, Heimann M, Kolle O, Luus KA, Schuur EAG, Zimov N, Zimov SA, Göckede M (2016) Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences 13(14):4219–4235. https://doi.org/10.5194/bg-13-4219-2016

    Article  Google Scholar 

  • Kwon MJ, Beulig F, Ilie I, Wildner M, Kusel K, Merbold L, Mahecha MD, Zimov N, Zimov SA, Heimann M, Schuur EAG, Kostka JE, Kolle O, Hilke I, Göckede M (2017) Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Glob Chang Biol 23(6):2396–2412. https://doi.org/10.1111/gcb.13558

    Article  Google Scholar 

  • Lecher AL, Kessler J, Sparrow K, Kodovska FGT, Dimova N, Murray J, Tulaczyk S, Paytan A (2016) Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites. Limnol Oceanogr 61(S1):S344–S355

    Article  Google Scholar 

  • Leibman MO, Kizyakov AI, Plekhanov AV, Streletskaya ID (2014) New permafrost feature–deep crater in central Yamal (West Siberia, Russia) as a response to local climate fluctuations. Environ Sustain 4:68–80

    Google Scholar 

  • Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat Commun 10(1):1329. https://doi.org/10.1038/s41467-019-09314-7

    Article  Google Scholar 

  • Ling F, Zhang T (2003) Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res 108(D16):4511. https://doi.org/10.1029/2002JD003014

    Article  Google Scholar 

  • Mackay JR (1998) Pingo growth and collapse, Tuktoyaktuk Peninsula area, western Arctic coast, Canada: a long-term field study. Géog Phys Quatern 52(3):271–323

    Google Scholar 

  • Marushchak M, Pitkämäki A, Koponen H, Biasi C, Seppälä M, Martikainen P (2011) Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob Chang Biol 17(8):2601–2614

    Article  Google Scholar 

  • Nelson FE, Outcalt SI (1987) A computational method for prediction and regionalization of permafrost. Arct Alp Res 19(3):279–288

    Article  Google Scholar 

  • Nicolsky D, Romanovsky V, Romanovskii N, Kholodov A, Shakhova N, Semiletov I (2012) Modeling sub‐sea permafrost in the East Siberian Arctic Shelf: the Laptev Sea region. J Geophys Res Earth 117(F3):F03028. https://doi.org/10.1029/2012JF002358

    Article  Google Scholar 

  • Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Andersen D, Greer CW, Pollard W, Whyte LG (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4(10):1326

    Article  Google Scholar 

  • Nisbet E, Manning M, Dlugokencky E, Fisher R, Lowry D, Michel S, Myhre CL, Platt SM, Allen G, Bousquet P (2019) Very strong atmospheric methane growth in the 4 years 2014–2017: implications for the Paris Agreement. Glob Biogeochem Cycles 33(3):318–342

    Article  Google Scholar 

  • O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chappellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48(4). https://doi.org/10.1029/2010rg000326

  • Olenchenko V, Sinitsky A, Antonov E, Eltsov I, Kushnarenko O, Plotnikov A, Potapov V, Epov M (2015) Results of geophysical surveys of the area of “Yamal Crater”, the new geological structure. Methods 19(4):84–95

    Google Scholar 

  • Parmentier F-JW, Christensen TR, Sørensen LL, Rysgaard S, McGuire AD, Miller PA, Walker DA (2013) The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nat Clim Chang 3(3):195–202. https://doi.org/10.1038/nclimate1784

    Article  Google Scholar 

  • Parmentier FW, Zhang W, Mi Y, Zhu X, van Huissteden J, Hayes DJ, Zhuang Q, Christensen TR, McGuire AD (2015) Rising methane emissions from northern wetlands associated with sea ice decline. Geophys Res Lett 42(17):7214–7222. https://doi.org/10.1002/2015GL065013

    Article  Google Scholar 

  • Paull CK, Ussler W, Dallimore SR, Blasco SM, Lorenson TD, Melling H, Medioli BE, Nixon FM, McLaughlin FA (2007) Origin of pingo‐like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophys Res Lett 34(1):L01603. https://doi.org/10.1029/2006GL027977

    Article  Google Scholar 

  • Pohlman JW, Greinert J, Ruppel C, Silyakova A, Vielstädte L, Casso M, Mienert J, Bünz S (2017) Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane. Proc Natl Acad Sci 114(21):5355–5360

    Article  Google Scholar 

  • Portnov A, Smith AJ, Mienert J, Cherkashov G, Rekant P, Semenov P, Serov P, Vanshtein B (2013) Offshore permafrost decay and massive seabed methane escape in water depths> 20 m at the South Kara Sea shelf. Geophys Res Lett 40(15):3962–3967

    Article  Google Scholar 

  • Portnov A, Mienert J, Serov P (2014) Modeling the evolution of climate‐sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. J Geophys Res Biogeo 119(11):2082–2094

    Article  Google Scholar 

  • Rehder G, Kirby SH, Durham WB, Stern LA, Peltzer ET, Pinkston J, Brewer PG (2004) Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth. Geochim Cosmochim Acta 68(2):285–292

    Article  Google Scholar 

  • Repo ME, Susiluoto S, Lind SE, Jokinen S, Elsakov V, Biasi C, Virtanen T, Martikainen PJ (2009) Large N2O emissions from cryoturbated peat soil in tundra. Nat Geosci 2(3):189

    Article  Google Scholar 

  • Rivkina E, Gilichinsky DA, McKay C, Dallimore S (2001) Methane distribution in permafrost: evidence for an interpore pressure methane hydrate. In: Permafrost response on economic development, environmental security and natural resources. Springer, Dordrecht, pp 487–496

    Chapter  Google Scholar 

  • Rivkina E, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61(1):1–15. https://doi.org/10.1111/j.1574-6941.2007.00315.x

    Article  Google Scholar 

  • Romanovskii N, Hubberten H-W, Gavrilov A, Tumskoy V, Kholodov A (2004) Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quat Sci Rev 23(11):1359–1369

    Article  Google Scholar 

  • Romanovskii N, Hubberten H-W, Gavrilov A, Eliseeva A, Tipenko G (2005) Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar Lett 25(2–3):167–182

    Article  Google Scholar 

  • Ruppel CD (2011) Methane hydrates and contemporary climate change. Nat Educ Knowl 2(12):12

    Google Scholar 

  • Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55(1):126–168

    Article  Google Scholar 

  • Savvichev A, Leibman M, Kadnikov V, Kallistova A, Pimenov N, Ravin N, Dvornikov Y, Khomutov A (2018) Microbiological study of Yamal Lakes: a key to understanding the evolution of gas emission craters. Geosciences 8(12):478

    Article  Google Scholar 

  • Schneider von Deimling T, Grosse G, Strauss J, Schirrmeister L, Morgenstern A, Schaphoff S, Meinshausen M, Boike J (2015) Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12(11):3469–3488

    Article  Google Scholar 

  • Schuur EA, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179. https://doi.org/10.1038/nature14338

    Article  Google Scholar 

  • Serov P, Portnov A, Mienert J, Semenov P, Ilatovskaya P (2015) Methane release from pingo‐like features across the South Kara Sea shelf, an area of thawing offshore permafrost. J Geophys Res Earth 120(8):1515–1529

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Leifer I, Salyuk A, Rekant P, Kosmach D (2010a) Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J Geophys Res Oceans 115(C8):C08007. https://doi.org/10.1029/2009JC005602

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Salyuk A, Yusupov V, Kosmach D, Gustafsson Ö (2010b) Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327(5970):1246–1250

    Article  Google Scholar 

  • Shakhova N, Semiletov I, Leifer I, Sergienko V, Salyuk A, Kosmach D, Chernykh D, Stubbs C, Nicolsky D, Tumskoy V (2014) Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat Geosci 7(1):64

    Article  Google Scholar 

  • Shcherbakova V, Yoshimura Y, Ryzhmanova Y, Taguchi Y, Segawa T, Oshurkova V, Rivkina E (2016) Archaeal communities of Arctic methane-containing permafrost. FEMS Microbiol Ecol 92(10)

    Article  Google Scholar 

  • Slater AG, Lawrence DM (2013) Diagnosing present and future permafrost from climate models. J Clim 26(15):5608–5623

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the Intergovernmental Panel on climate change 2013. URL https://www.google.com/books

  • Stolaroff JK, Bhattacharyya S, Smith CA, Bourcier WL, Cameron-Smith PJ, Aines RD (2012) Review of methane mitigation technologies with application to rapid release of methane from the Arctic. Environ Sci Technol 46(12):6455–6469

    Article  Google Scholar 

  • Stotler RL, Frape SK, Ahonen L, Clark I, Greene S, Hobbs M, Johnson E, Lemieux J-M, Peltier R, Pratt L (2010) Origin and stability of a permafrost methane hydrate occurrence in the Canadian Shield. Earth Planet Sci Lett 296(3–4):384–394

    Article  Google Scholar 

  • Sugimoto A, Wada E (1993) Carbon isotopic composition of bacterial methane in a soil incubation experiment: contributions of acetate and CO2H2. Geochim Cosmochim Acta 57(16):4015–4027

    Article  Google Scholar 

  • Thornton BF, Geibel MC, Crill PM, Humborg C, Mörth CM (2016) Methane fluxes from the sea to the atmosphere across the Siberian shelf seas. Geophys Res Lett 43(11):5869–5877

    Article  Google Scholar 

  • Tuorto SJ, Darias P, McGuinness LR, Panikov N, Zhang T, Häggblom MM, Kerkhof LJ (2014) Bacterial genome replication at subzero temperatures in permafrost. ISME J 8(1):139

    Article  Google Scholar 

  • Voigt C, Lamprecht RE, Marushchak ME, Lind SE, Novakovskiy A, Aurela M, Martikainen PJ, Biasi C (2017) Warming of subarctic tundra increases emissions of all three important greenhouse gases–carbon dioxide, methane, and nitrous oxide. Glob Chang Biol 23(8):3121–3138

    Article  Google Scholar 

  • Walter Anthony KM, Anthony P, Grosse G, Chanton J (2012) Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat Geosci 5(6):419–426. https://doi.org/10.1038/ngeo1480

    Article  Google Scholar 

  • Walter Anthony K, Daanen R, Anthony P, Schneider von Deimling T, Ping C-L, Chanton JP, Grosse G (2016) Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat Geosci 9:679–682

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS 3rd (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7107):71–75. https://doi.org/10.1038/nature05040

    Article  Google Scholar 

  • Walter KM, Smith LC, Chapin FS 3rd (2007a) A methane bubbling from northern lakes: present and future contributions to the global methane budget. Philos Trans A Math Phys Eng Sci 365(1856):1657–1676. https://doi.org/10.1098/rsta.2007.2036

    Article  Google Scholar 

  • Walter K, Chanton J, Chapin F, Schuur E, Zimov S (2008) Methane production and bubble emissions from arctic lakes: isotopic implications for source pathways and ages. J Geophys Res Biogeo 113(G3):G00A08. https://doi.org/10.1029/2007JG000569

    Article  Google Scholar 

  • West J, Plug LJ (2008) Time‐dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J Geophys Res Earth 113(F1):F01009. https://doi.org/10.1029/2006JF000696

    Article  Google Scholar 

  • Whiticar M (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci 9(2):99

    Article  Google Scholar 

  • Wilkerson J, Dobosy R, Sayres DS, Healy C, Dumas E, Baker B, Anderson JG (2019) Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method. Atmos Chem Phys 19(7):4257–4268

    Article  Google Scholar 

  • Woolway RI, Merchant CJ (2019) Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci 12:271–276. https://doi.org/10.1038/s41561-019-0322-x

    Article  Google Scholar 

  • Worden JR, Bloom AA, Pandey S, Jiang Z, Worden HM, Walker TW, Houweling S, Röckmann T (2017) Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat Commun 8(1):2227

    Article  Google Scholar 

  • Yakushev V, Chuvilin E (2000) Natural gas and gas hydrate accumulations within permafrost in Russia. Cold Reg Sci Technol 31(3):189–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Huissteden, J. (2020). Methane. In: Thawing Permafrost. Springer, Cham. https://doi.org/10.1007/978-3-030-31379-1_7

Download citation

Publish with us

Policies and ethics