Skip to main content

Non-smooth Variational Regularization for Processing Manifold-Valued Data

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data

Abstract

Many methods for processing scalar and vector valued images, volumes and other data in the context of inverse problems are based on variational formulations. Such formulations require appropriate regularization functionals that model expected properties of the object to reconstruct. Prominent examples of regularization functionals in a vector-space context are the total variation (TV) and the Mumford-Shah functional, as well as higher-order schemes such as total generalized variation models. Driven by applications where the signals or data live in nonlinear manifolds, there has been quite some interest in developing analogous methods for nonlinear, manifold-valued data recently. In this chapter, we consider various variational regularization methods for manifold-valued data. In particular, we consider TV minimization as well as higher order models such as total generalized variation (TGV). Also, we discuss (discrete) Mumford-Shah models and related methods for piecewise constant data. We develop discrete energies for denoising and report on algorithmic approaches to minimize them. Further, we also deal with the extension of such methods to incorporate indirect measurement terms, thus addressing the inverse problem setup. Finally, we discuss wavelet sparse regularization for manifold-valued data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. 51(3), 2230–2260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexeev, B., Ward, R.: On the complexity of Mumford–Shah-type regularization, viewed as a relaxed sparsity constraint. IEEE Trans. Image Process. 19(10), 2787–2789 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alliney, S.: Digital filters as absolute norm regularizers. IEEE Trans. Signal Process. 40, 1548–1562 (1992)

    Article  MATH  Google Scholar 

  4. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center. Comput. Geom. 46(1), 93–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azagra, D., Ferrera, J.: Proximal calculus on Riemannian manifolds. Mediterr. J. Math. 2, 437–450 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24(3), 1542–1566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bačák, M.: Convex analysis and optimization in Hadamard spaces. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  9. Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order non-smooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38(1), A567–A597 (2016)

    Article  MATH  Google Scholar 

  10. Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  11. Baust, M., Demaret, L., Storath, M., Navab, N., Weinmann, A.: Total variation regularization of shape signals. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2075–2083 (2015)

    Google Scholar 

  12. Baust, M., Weinmann, A., Wieczorek, M., Lasser, T., Storath, M., Navab, N.: Combined tensor fitting and TV regularization in diffusion tensor imaging based on a Riemannian manifold approach. IEEE Trans. Med. Imaging 35(8), 1972–1989 (2016)

    Article  Google Scholar 

  13. Bergmann, R., Chan, R.H., Hielscher, R., Persch, J., Steidl, G.: Restoration of manifold-valued images by half-quadratic minimization. Inverse Prob. Imaging 10, 281–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Infimal convolution type coupling of first and second order differences on manifold-valued images. In: Scale Space and Variational Methods in Computer Vision 2017, pp. 447–459 (2017)

    Google Scholar 

  15. Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Priors with coupled first and second order differences for manifold-valued image processing. J. Math. Imaging Vision 60(9), 1459–1481 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berkels, B., Fletcher, P., Heeren, B., Rumpf, M., Wirth, B.: Discrete geodesic regression in shape space. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 108–122. Springer, New York (2013)

    Google Scholar 

  17. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. CRC Press, Boca Raton (1998)

    Book  MATH  Google Scholar 

  18. Bertsekas, D.: Multiplier methods: a survey. Automatica 12(2), 133–145 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bertsekas, D.: Incremental proximal methods for large scale convex optimization. Math. Program. 129, 163–195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Book  Google Scholar 

  21. Boyer, C., Chambolle, A., Castro, Y.D., Duval, V., De Gournay, F., Weiss, P.: On representer theorems and convex regularization. SIAM J. Optim. 29(2), 1260–1281 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  23. Boysen, L., Kempe, A., Liebscher, V., Munk, A., Wittich, O.: Consistencies and rates of convergence of jump-penalized least squares estimators. Ann. Stat. 37(1), 157–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bredies, K., Carioni, M.: Sparsity of solutions for variational inverse problems with finite-dimensional data (2018). arXiv preprint arXiv:1809.05045

    Google Scholar 

  25. Bredies, K., Holler, M.: Regularization of linear inverse problems with total generalized variation. J. Inverse Ill-Posed Probl. 22(6), 871–913 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bredies, K., Holler, M., Storath, M., Weinmann, A.: An observation concerning the parallel transport variant of total generalized variation for manifold-valued data. Oberwolfach Rep. 20, 38–41 (2018)

    MATH  Google Scholar 

  27. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bredies, K., Holler, M., Storath, M., Weinmann, A.: Total generalized variation for manifold-valued data. SIAM J. Imaging Sci. 11(3), 1785–1848 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision, vol. 453. American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  30. Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. J. SIAM Appl. Math. 55(3), 827–863 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chambolle, A.: Finite-differences discretizations of the Mumford-Shah functional. ESAIM Math. Model. Numer. Anal. 33(02), 261–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chambolle, A., De Vore, R., Lee, N., Lucier, B.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chan, T., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. J. SIAM Appl. Math. 65, 1817–1837 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chan, T., Kang, S., Shen, J.: Total variation denoising and enhancement of color images based on the CB and HSV color models. J. Vis. Commun. Image Represent. 12, 422–435 (2001)

    Article  Google Scholar 

  38. Cheng, G., Salehian, H., Vemuri, B.: Efficient recursive algorithms for computing the mean diffusion tensor and applications to DTI segmentation. In: Computer Vision–ECCV 2012, pp. 390–401. Springer, Berlin (2012)

    Google Scholar 

  39. Cook, P., Bai, Y., Nedjati-Gilani, S., Seunarine, K., Hall, M., Parker, G., Alexander, D.: Camino: open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p. 2759 (2006)

    Google Scholar 

  40. Cremers, D., Strekalovskiy, E.: Total cyclic variation and generalizations. J. Math. Imaging Vision 47(3), 258–277 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Demengel, F.: Fonctionsa hessien borné. Ann. Inst. Fourier 34, 155–190 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Donoho, D.: Interpolating wavelet transforms. Department of Statistics, Stanford University 2(3), 1–54 (1992). Preprint

    Google Scholar 

  43. Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Trans. Pattern Anal. Mach. Intell. 24, 932–946 (2002)

    Article  Google Scholar 

  45. Duran, J., Möller, M., Sbert, C., Cremers, D.: Collaborative total variation: a general framework for vectorial tv models. SIAM J. Imaging Sci. 9(1), 116–151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer Science & Business Media, New York (1996)

    Book  MATH  Google Scholar 

  47. Ferreira, O., Oliveira, P.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97(1), 93–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ferreira, O., Oliveira, P.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ferreira, R., Xavier, J., Costeira, J., Barroso, V.: Newton algorithms for Riemannian distance related problems on connected locally symmetric manifolds. IEEE J. Sel. Top. Signal Process. 7, 634–645 (2013)

    Article  Google Scholar 

  50. Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87, 250–262 (2007)

    Article  MATH  Google Scholar 

  51. Fornasier, M., Ward, R.: Iterative thresholding meets free-discontinuity problems. Found. Comput. Math. 10(5), 527–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Fornasier, M., March, R., Solombrino, F.: Existence of minimizers of the Mumford-Shah functional with singular operators and unbounded data. Ann. Mat. Pura Appl. 192(3), 361–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Friedrich, F., Kempe, A., Liebscher, V., Winkler, G.: Complexity penalized M-estimation. J. Comput. Graph. Stat. 17(1), 201–224 (2008)

    Article  MathSciNet  Google Scholar 

  54. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  55. Getreuer, P.: Rudin-Osher-Fatemi total variation denoising using split Bregman. Image Process. Line 2, 74–95 (2012)

    Article  Google Scholar 

  56. Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(4), 483–548 (2006)

    MathSciNet  MATH  Google Scholar 

  57. Giaquinta, M., Modica, G., Souček, J.: Variational problems for maps of bounded variation with values in S 1. Calc. Var. Partial Differ. Equ. 1(1), 87–121 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Goldstein, T., Osher, S.: The split Bregman method for L 1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gousseau, Y., Morel, J.M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33, 634–648 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. Green, P., Mardia, K.: Bayesian alignment using hierarchical models, with applications in protein bioinformatics. Biometrika 93, 235–254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Grohs, P.: Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM J. Numer. Anal. 46(4), 2169–2182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Grohs, P.: Stability of manifold-valued subdivision schemes and multiscale transformations. Constr. Approx. 32(3), 569–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Grohs, P., Sprecher, M.: Total variation regularization on Riemannian manifolds by iteratively reweighted minimization. Inf. Inference 5(4), 353–378 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. Anal. 27(3), 325–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1–2), 109–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Hohm, K., Storath, M., Weinmann, A.: An algorithmic framework for Mumford-Shah regularization of inverse problems in imaging. Inverse Prob. 31, 115011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Itoh, J., Tanaka, M.: The dimension of a cut locus on a smooth Riemannian manifold. Tohoku Math. J. (2) 50(4), 571–575 (1998)

    Google Scholar 

  68. Jiang, M., Maass, P., Page, T.: Regularizing properties of the Mumford-Shah functional for imaging applications. Inverse Prob. 30(3), 035007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  69. Johansen-Berg, H., Behrens, T.: Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy. Academic, London (2009)

    Google Scholar 

  70. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  71. Kendall, W.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 3, 371–406 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  72. Kheyfets, A., Miller, W.A., Newton, G.A.: Schild’s ladder parallel transport procedure for an arbitrary connection. Int. J. Theor. Phys. 39(12), 2891–2898 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  73. Killick, R., Fearnhead, P., Eckley, I.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: International Conference on Computer Vision (ICCV), pp. 2944–2951 (2013)

    Google Scholar 

  75. Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder. J. Math. Imaging Vision 50(1–2), 5–17 (2014)

    Article  MATH  Google Scholar 

  76. Massonnet, D., Feigl, K.: Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 36(4), 441–500 (1998)

    Article  Google Scholar 

  77. Michor, P., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  78. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. A Math. 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  79. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 17, pp. 137–154 (1985)

    Google Scholar 

  80. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  81. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40, 965–994 (2002)

    Article  MATH  Google Scholar 

  82. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20, 99–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  83. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006)

    Article  MATH  Google Scholar 

  84. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1133–1140 (2009)

    Google Scholar 

  85. Potts, R.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc. 48(01), 106–109 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  86. Rezakhaniha, R., Agianniotis, A., Schrauwen, J., Griffa, A., Sage, D., Bouten, C., Van de Vosse, F., Unser, M., Stergiopulos, N.: Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11, 461–473 (2012)

    Article  Google Scholar 

  87. Rocca, F., Prati, C., Ferretti, A.: An overview of SAR interferometry. In: Proceedings of the 3rd ERS Symposium on Space at the Service of our Environment, Florence (1997)

    Google Scholar 

  88. Rodriguez, P., Wohlberg, B.: An iteratively reweighted norm algorithm for total variation regularization. In: IEEE Conference on Signals, Systems and Computers, pp. 892–896 (2006)

    Google Scholar 

  89. Rosman, G., Bronstein, M., Bronstein, A., Wolf, A., Kimmel, R.: Group-valued regularization framework for motion segmentation of dynamic non-rigid shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 725–736. Springer, Berlin (2012)

    Google Scholar 

  90. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenom. 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  91. Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11), 1582–1586 (1996)

    Article  MATH  Google Scholar 

  92. Stefanoiu, A., Weinmann, A., Storath, M., Navab, N., Baust, M.: Joint segmentation and shape regularization with a generalized forward–backward algorithm. IEEE Trans. Image Process. 25(7), 3384–3394 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  93. Storath, M., Weinmann, A.: Fast partitioning of vector-valued images. SIAM J. Imaging Sci. 7(3), 1826–1852 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  94. Storath, M., Weinmann, A.: Variational regularization of inverse problems for manifold-valued data (2018). arXiv preprint arXiv:1804.10432

    Google Scholar 

  95. Storath, M., Weinmann, A.: Wavelet sparse regularization for manifold-valued data (2018). arXiv preprint arXiv:1808.00505

    Google Scholar 

  96. Storath, M., Weinmann, A., Demaret, L.: Jump-sparse and sparse recovery using Potts functionals. IEEE Trans. Signal Process. 62(14), 3654–3666 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  97. Storath, M., Weinmann, A., Frikel, J., Unser, M.: Joint image reconstruction and segmentation using the Potts model. Inverse Prob. 31(2), 025003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  98. Storath, M., Weinmann, A., Unser, M.: Exact algorithms for L 1-TV regularization of real-valued or circle-valued signals. SIAM J. Sci. Comput. 38(1), A614–A630 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  99. Storath, M., Weinmann, A., Unser, M.: Jump-penalized least absolute values estimation of scalar or circle-valued signals. Inf. Inference 6(3), 225–245 (2017)

    MathSciNet  MATH  Google Scholar 

  100. Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: convex relaxation and efficient minimization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1905–1911 (2011)

    Google Scholar 

  101. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Prob. 19, S165 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  102. Thiel, K., Wu, X., Hartl, P.: ERS-tandem-interferometric observation of volcanic activities in Iceland. In: ESA SP, pp. 475–480 (1997). https://earth.esa.int/workshops/ers97/papers/thiel/index-2.html

  103. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B Methodol. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  104. Tsai, A., Yezzi Jr., A., Willsky, A.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  105. Ur Rahman, I., Drori, I., Stodden, V., Donoho, D., Schröder, P.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4(4), 1201–1232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  106. Veksler, O.: Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University (1999)

    Google Scholar 

  107. Wallner, J., Dyn, N.: Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22(7), 593–622 (2005)

    Article  MATH  Google Scholar 

  108. Wallner, J., Yazdani, E., Weinmann, A.: Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Adv. Comput. Math. 34(2), 201–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  109. Wang, Z., Vemuri, B.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. I228–I233 (2004)

    Google Scholar 

  110. Wang, Z., Vemuri, B.: DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Trans. Med. Imaging 24(10), 1267–1277 (2005)

    Article  Google Scholar 

  111. Weaver, J., Xu, Y., Healy, D., Cromwell, L.: Filtering noise from images with wavelet transforms. Magn. Reson. Med. 21(2), 288–295 (1991)

    Article  Google Scholar 

  112. Weinmann, A.: Nonlinear subdivision schemes on irregular meshes. Constr. Approx. 31(3), 395–415 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  113. Weinmann, A.: Interpolatory multiscale representation for functions between manifolds. SIAM J. Math. Anal. 44, 162–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  114. Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  115. Weinmann, A., Storath, M., Demaret, L.: The L 1-Potts functional for robust jump-sparse reconstruction. SIAM J. Numer. Anal. 53(1), 644–673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  116. Weinmann, A., Demaret, L., Storath, M.: Mumford–Shah and Potts regularization for manifold-valued data. J. Math. Imaging Vision 55(3), 428–445 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  117. Winkler, G., Liebscher, V.: Smoothers for discontinuous signals. J. Nonparametr. Stat. 14(1–2), 203–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  118. Wittich, O., Kempe, A., Winkler, G., Liebscher, V.: Complexity penalized least squares estimators: analytical results. Math. Nachr. 281(4), 582–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  119. Xie, G., Yu, T.: Smoothness equivalence properties of general manifold-valued data subdivision schemes. Multiscale Model. Simul. 7(3), 1073–1100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

MH acknowledges support by the Austrian Science Fund (FWF) (Grant J 4112). AW acknowledges support by the DFG Grants WE 5886/3-1 and WE 5886/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Holler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holler, M., Weinmann, A. (2020). Non-smooth Variational Regularization for Processing Manifold-Valued Data. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_2

Download citation

Publish with us

Policies and ethics