Abstract
Many methods for processing scalar and vector valued images, volumes and other data in the context of inverse problems are based on variational formulations. Such formulations require appropriate regularization functionals that model expected properties of the object to reconstruct. Prominent examples of regularization functionals in a vector-space context are the total variation (TV) and the Mumford-Shah functional, as well as higher-order schemes such as total generalized variation models. Driven by applications where the signals or data live in nonlinear manifolds, there has been quite some interest in developing analogous methods for nonlinear, manifold-valued data recently. In this chapter, we consider various variational regularization methods for manifold-valued data. In particular, we consider TV minimization as well as higher order models such as total generalized variation (TGV). Also, we discuss (discrete) Mumford-Shah models and related methods for piecewise constant data. We develop discrete energies for denoising and report on algorithmic approaches to minimize them. Further, we also deal with the extension of such methods to incorporate indirect measurement terms, thus addressing the inverse problem setup. Finally, we discuss wavelet sparse regularization for manifold-valued data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. 51(3), 2230–2260 (2013)
Alexeev, B., Ward, R.: On the complexity of Mumford–Shah-type regularization, viewed as a relaxed sparsity constraint. IEEE Trans. Image Process. 19(10), 2787–2789 (2010)
Alliney, S.: Digital filters as absolute norm regularizers. IEEE Trans. Signal Process. 40, 1548–1562 (1992)
Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)
Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center. Comput. Geom. 46(1), 93–104 (2013)
Azagra, D., Ferrera, J.: Proximal calculus on Riemannian manifolds. Mediterr. J. Math. 2, 437–450 (2005)
Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24(3), 1542–1566 (2014)
Bačák, M.: Convex analysis and optimization in Hadamard spaces. De Gruyter, Berlin (2014)
Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order non-smooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38(1), A567–A597 (2016)
Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)
Baust, M., Demaret, L., Storath, M., Navab, N., Weinmann, A.: Total variation regularization of shape signals. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2075–2083 (2015)
Baust, M., Weinmann, A., Wieczorek, M., Lasser, T., Storath, M., Navab, N.: Combined tensor fitting and TV regularization in diffusion tensor imaging based on a Riemannian manifold approach. IEEE Trans. Med. Imaging 35(8), 1972–1989 (2016)
Bergmann, R., Chan, R.H., Hielscher, R., Persch, J., Steidl, G.: Restoration of manifold-valued images by half-quadratic minimization. Inverse Prob. Imaging 10, 281–304 (2016)
Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Infimal convolution type coupling of first and second order differences on manifold-valued images. In: Scale Space and Variational Methods in Computer Vision 2017, pp. 447–459 (2017)
Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Priors with coupled first and second order differences for manifold-valued image processing. J. Math. Imaging Vision 60(9), 1459–1481 (2018)
Berkels, B., Fletcher, P., Heeren, B., Rumpf, M., Wirth, B.: Discrete geodesic regression in shape space. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 108–122. Springer, New York (2013)
Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. CRC Press, Boca Raton (1998)
Bertsekas, D.: Multiplier methods: a survey. Automatica 12(2), 133–145 (1976)
Bertsekas, D.: Incremental proximal methods for large scale convex optimization. Math. Program. 129, 163–195 (2011)
Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)
Boyer, C., Chambolle, A., Castro, Y.D., Duval, V., De Gournay, F., Weiss, P.: On representer theorems and convex regularization. SIAM J. Optim. 29(2), 1260–1281 (2019)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)
Boysen, L., Kempe, A., Liebscher, V., Munk, A., Wittich, O.: Consistencies and rates of convergence of jump-penalized least squares estimators. Ann. Stat. 37(1), 157–183 (2009)
Bredies, K., Carioni, M.: Sparsity of solutions for variational inverse problems with finite-dimensional data (2018). arXiv preprint arXiv:1809.05045
Bredies, K., Holler, M.: Regularization of linear inverse problems with total generalized variation. J. Inverse Ill-Posed Probl. 22(6), 871–913 (2014)
Bredies, K., Holler, M., Storath, M., Weinmann, A.: An observation concerning the parallel transport variant of total generalized variation for manifold-valued data. Oberwolfach Rep. 20, 38–41 (2018)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Bredies, K., Holler, M., Storath, M., Weinmann, A.: Total generalized variation for manifold-valued data. SIAM J. Imaging Sci. 11(3), 1785–1848 (2018)
Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision, vol. 453. American Mathematical Society, Providence (1991)
Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. J. SIAM Appl. Math. 55(3), 827–863 (1995)
Chambolle, A.: Finite-differences discretizations of the Mumford-Shah functional. ESAIM Math. Model. Numer. Anal. 33(02), 261–288 (1999)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004)
Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011)
Chambolle, A., De Vore, R., Lee, N., Lucier, B.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998)
Chan, T., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. J. SIAM Appl. Math. 65, 1817–1837 (2005)
Chan, T., Kang, S., Shen, J.: Total variation denoising and enhancement of color images based on the CB and HSV color models. J. Vis. Commun. Image Represent. 12, 422–435 (2001)
Cheng, G., Salehian, H., Vemuri, B.: Efficient recursive algorithms for computing the mean diffusion tensor and applications to DTI segmentation. In: Computer Vision–ECCV 2012, pp. 390–401. Springer, Berlin (2012)
Cook, P., Bai, Y., Nedjati-Gilani, S., Seunarine, K., Hall, M., Parker, G., Alexander, D.: Camino: open-source diffusion-MRI reconstruction and processing. In: 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p. 2759 (2006)
Cremers, D., Strekalovskiy, E.: Total cyclic variation and generalizations. J. Math. Imaging Vision 47(3), 258–277 (2013)
Demengel, F.: Fonctionsa hessien borné. Ann. Inst. Fourier 34, 155–190 (1984)
Donoho, D.: Interpolating wavelet transforms. Department of Statistics, Stanford University 2(3), 1–54 (1992). Preprint
Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)
Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Trans. Pattern Anal. Mach. Intell. 24, 932–946 (2002)
Duran, J., Möller, M., Sbert, C., Cremers, D.: Collaborative total variation: a general framework for vectorial tv models. SIAM J. Imaging Sci. 9(1), 116–151 (2016)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Springer Science & Business Media, New York (1996)
Ferreira, O., Oliveira, P.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97(1), 93–104 (1998)
Ferreira, O., Oliveira, P.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)
Ferreira, R., Xavier, J., Costeira, J., Barroso, V.: Newton algorithms for Riemannian distance related problems on connected locally symmetric manifolds. IEEE J. Sel. Top. Signal Process. 7, 634–645 (2013)
Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87, 250–262 (2007)
Fornasier, M., Ward, R.: Iterative thresholding meets free-discontinuity problems. Found. Comput. Math. 10(5), 527–567 (2010)
Fornasier, M., March, R., Solombrino, F.: Existence of minimizers of the Mumford-Shah functional with singular operators and unbounded data. Ann. Mat. Pura Appl. 192(3), 361–391 (2013)
Friedrich, F., Kempe, A., Liebscher, V., Winkler, G.: Complexity penalized M-estimation. J. Comput. Graph. Stat. 17(1), 201–224 (2008)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)
Getreuer, P.: Rudin-Osher-Fatemi total variation denoising using split Bregman. Image Process. Line 2, 74–95 (2012)
Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(4), 483–548 (2006)
Giaquinta, M., Modica, G., Souček, J.: Variational problems for maps of bounded variation with values in S 1. Calc. Var. Partial Differ. Equ. 1(1), 87–121 (1993)
Goldstein, T., Osher, S.: The split Bregman method for L 1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)
Gousseau, Y., Morel, J.M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33, 634–648 (2001)
Green, P., Mardia, K.: Bayesian alignment using hierarchical models, with applications in protein bioinformatics. Biometrika 93, 235–254 (2006)
Grohs, P.: Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM J. Numer. Anal. 46(4), 2169–2182 (2008)
Grohs, P.: Stability of manifold-valued subdivision schemes and multiscale transformations. Constr. Approx. 32(3), 569–596 (2010)
Grohs, P., Sprecher, M.: Total variation regularization on Riemannian manifolds by iteratively reweighted minimization. Inf. Inference 5(4), 353–378 (2016)
Grohs, P., Wallner, J.: Interpolatory wavelets for manifold-valued data. Appl. Comput. Harmon. Anal. 27(3), 325–333 (2009)
Hinterberger, W., Scherzer, O.: Variational methods on the space of functions of bounded Hessian for convexification and denoising. Computing 76(1–2), 109–133 (2006)
Hohm, K., Storath, M., Weinmann, A.: An algorithmic framework for Mumford-Shah regularization of inverse problems in imaging. Inverse Prob. 31, 115011 (2015)
Itoh, J., Tanaka, M.: The dimension of a cut locus on a smooth Riemannian manifold. Tohoku Math. J. (2) 50(4), 571–575 (1998)
Jiang, M., Maass, P., Page, T.: Regularizing properties of the Mumford-Shah functional for imaging applications. Inverse Prob. 30(3), 035007 (2014)
Johansen-Berg, H., Behrens, T.: Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy. Academic, London (2009)
Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)
Kendall, W.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 3, 371–406 (1990)
Kheyfets, A., Miller, W.A., Newton, G.A.: Schild’s ladder parallel transport procedure for an arbitrary connection. Int. J. Theor. Phys. 39(12), 2891–2898 (2000)
Killick, R., Fearnhead, P., Eckley, I.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)
Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: International Conference on Computer Vision (ICCV), pp. 2944–2951 (2013)
Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder. J. Math. Imaging Vision 50(1–2), 5–17 (2014)
Massonnet, D., Feigl, K.: Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 36(4), 441–500 (1998)
Michor, P., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)
Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. A Math. 255, 2897–2899 (1962)
Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 17, pp. 137–154 (1985)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)
Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40, 965–994 (2002)
Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20, 99–120 (2004)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66, 41–66 (2006)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1133–1140 (2009)
Potts, R.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc. 48(01), 106–109 (1952)
Rezakhaniha, R., Agianniotis, A., Schrauwen, J., Griffa, A., Sage, D., Bouten, C., Van de Vosse, F., Unser, M., Stergiopulos, N.: Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11, 461–473 (2012)
Rocca, F., Prati, C., Ferretti, A.: An overview of SAR interferometry. In: Proceedings of the 3rd ERS Symposium on Space at the Service of our Environment, Florence (1997)
Rodriguez, P., Wohlberg, B.: An iteratively reweighted norm algorithm for total variation regularization. In: IEEE Conference on Signals, Systems and Computers, pp. 892–896 (2006)
Rosman, G., Bronstein, M., Bronstein, A., Wolf, A., Kimmel, R.: Group-valued regularization framework for motion segmentation of dynamic non-rigid shapes. In: Scale Space and Variational Methods in Computer Vision, pp. 725–736. Springer, Berlin (2012)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenom. 60(1), 259–268 (1992)
Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5(11), 1582–1586 (1996)
Stefanoiu, A., Weinmann, A., Storath, M., Navab, N., Baust, M.: Joint segmentation and shape regularization with a generalized forward–backward algorithm. IEEE Trans. Image Process. 25(7), 3384–3394 (2016)
Storath, M., Weinmann, A.: Fast partitioning of vector-valued images. SIAM J. Imaging Sci. 7(3), 1826–1852 (2014)
Storath, M., Weinmann, A.: Variational regularization of inverse problems for manifold-valued data (2018). arXiv preprint arXiv:1804.10432
Storath, M., Weinmann, A.: Wavelet sparse regularization for manifold-valued data (2018). arXiv preprint arXiv:1808.00505
Storath, M., Weinmann, A., Demaret, L.: Jump-sparse and sparse recovery using Potts functionals. IEEE Trans. Signal Process. 62(14), 3654–3666 (2014)
Storath, M., Weinmann, A., Frikel, J., Unser, M.: Joint image reconstruction and segmentation using the Potts model. Inverse Prob. 31(2), 025003 (2014)
Storath, M., Weinmann, A., Unser, M.: Exact algorithms for L 1-TV regularization of real-valued or circle-valued signals. SIAM J. Sci. Comput. 38(1), A614–A630 (2016)
Storath, M., Weinmann, A., Unser, M.: Jump-penalized least absolute values estimation of scalar or circle-valued signals. Inf. Inference 6(3), 225–245 (2017)
Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: convex relaxation and efficient minimization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1905–1911 (2011)
Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Prob. 19, S165 (2003)
Thiel, K., Wu, X., Hartl, P.: ERS-tandem-interferometric observation of volcanic activities in Iceland. In: ESA SP, pp. 475–480 (1997). https://earth.esa.int/workshops/ers97/papers/thiel/index-2.html
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B Methodol. 58, 267–288 (1996)
Tsai, A., Yezzi Jr., A., Willsky, A.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)
Ur Rahman, I., Drori, I., Stodden, V., Donoho, D., Schröder, P.: Multiscale representations for manifold-valued data. Multiscale Model. Simul. 4(4), 1201–1232 (2005)
Veksler, O.: Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University (1999)
Wallner, J., Dyn, N.: Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22(7), 593–622 (2005)
Wallner, J., Yazdani, E., Weinmann, A.: Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Adv. Comput. Math. 34(2), 201–218 (2011)
Wang, Z., Vemuri, B.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. I228–I233 (2004)
Wang, Z., Vemuri, B.: DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Trans. Med. Imaging 24(10), 1267–1277 (2005)
Weaver, J., Xu, Y., Healy, D., Cromwell, L.: Filtering noise from images with wavelet transforms. Magn. Reson. Med. 21(2), 288–295 (1991)
Weinmann, A.: Nonlinear subdivision schemes on irregular meshes. Constr. Approx. 31(3), 395–415 (2010)
Weinmann, A.: Interpolatory multiscale representation for functions between manifolds. SIAM J. Math. Anal. 44, 162–191 (2012)
Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)
Weinmann, A., Storath, M., Demaret, L.: The L 1-Potts functional for robust jump-sparse reconstruction. SIAM J. Numer. Anal. 53(1), 644–673 (2015)
Weinmann, A., Demaret, L., Storath, M.: Mumford–Shah and Potts regularization for manifold-valued data. J. Math. Imaging Vision 55(3), 428–445 (2016)
Winkler, G., Liebscher, V.: Smoothers for discontinuous signals. J. Nonparametr. Stat. 14(1–2), 203–222 (2002)
Wittich, O., Kempe, A., Winkler, G., Liebscher, V.: Complexity penalized least squares estimators: analytical results. Math. Nachr. 281(4), 582–595 (2008)
Xie, G., Yu, T.: Smoothness equivalence properties of general manifold-valued data subdivision schemes. Multiscale Model. Simul. 7(3), 1073–1100 (2008)
Acknowledgements
MH acknowledges support by the Austrian Science Fund (FWF) (Grant J 4112). AW acknowledges support by the DFG Grants WE 5886/3-1 and WE 5886/4-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Holler, M., Weinmann, A. (2020). Non-smooth Variational Regularization for Processing Manifold-Valued Data. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-31351-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31350-0
Online ISBN: 978-3-030-31351-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)