Geometric Finite Elements
- 571 Downloads
Abstract
Geometric finite elements (GFE) generalize the idea of Galerkin methods to variational problems for unknowns that map into nonlinear spaces. In particular, GFE methods introduce proper discrete function spaces that are conforming in the sense that values of geometric finite element functions are in the codomain manifold \(\mathcal {M}\) at any point. Several types of such spaces have been constructed, and some are even completely intrinsic, i.e., they can be defined without any surrounding space. GFE spaces enable the elegant numerical treatment of variational problems posed in Sobolev spaces with nonlinear codomain space. Indeed, as GFE spaces are geometrically conforming, such variational problems have natural formulations in GFE spaces. These correspond to the discrete formulations of classical finite element methods. Also, the canonical projection onto the discrete maps commutes with the differential for a suitable notion of the tangent bundle as a manifold, and we therefore also obtain natural weak formulations. Rigorous results exist that show the optimal behavior of the a priori L2 and H1 errors under reasonable smoothness assumptions. Although the discrete function spaces are no vector spaces, their elements can nevertheless be described by sets of coefficients, which live in the codomain manifold. Variational discrete problems can then be reformulated as algebraic minimization problems on the set of coefficients. These algebraic problems can be solved by established methods of manifold optimization. This text will explain the construction of several types of GFE spaces, discuss the corresponding test function spaces, and sketch the a priori error theory. It will also show computations of the harmonic maps problem, and of two example problems from nanomagnetics and plate mechanics.
References
- 1.Abatzoglou, T.J.: The minimum norm projection on C 2-manifolds in \(\mathbb {R}^n\). Trans. Am. Math. Soc. 243, 115–122 (1978)Google Scholar
- 2.Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)zbMATHCrossRefGoogle Scholar
- 3.Absil, P.A., Mahony, R., Trumpf, J.: An extrinsic look at the Riemannian Hessian. In: Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 361–368. Springer, Berlin (2013)Google Scholar
- 4.Absil, P.A., Gousenbourger, P.Y., Striewski, P., Wirth, B.: Differentiable piecewise-Bézier surfaces on Riemannian manifolds. SIAM J. Imaging Sci. 9(4), 1788–1828 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Alouges, F., Jaisson, P.: Convergence of a finite element discretization for the landau–lifshitz equations in micromagnetism. Math. Models Methods Appl. Sci. 16(2), 299–316 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Ambrosio, L.: Metric space valued functions of bounded variation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17(3), 439–478 (1990)MathSciNetzbMATHGoogle Scholar
- 8.Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2006)zbMATHGoogle Scholar
- 9.Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRefGoogle Scholar
- 10.Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Bartels, S., Prohl, A.: Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comput. 76(260), 1847–1859 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity – Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
- 13.Belavin, A., Polyakov, A.: Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22(10), 245–247 (1975)Google Scholar
- 14.Bergmann, R., Laus, F., Persch, J., Steidl, G.: Processing manifold-valued images. SIAM News 50(8), 1,3 (2017)Google Scholar
- 15.Berndt, J., Boeckx, E., Nagy, P.T., Vanhecke, L.: Geodesics on the unit tangent bundle. Proc. R. Soc. Edinb. A Math. 133(06), 1209–1229 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Bogdanov, A., Hubert, A.: Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994)CrossRefGoogle Scholar
- 17.Buss, S.R., Fillmore, J.P.: Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 95–126 (2001)CrossRefGoogle Scholar
- 18.Cartan, E.: Groupes simples clos et ouverts et géométrie riemannienne. J. Math. Pures Appl. 8, 1–34 (1929)zbMATHGoogle Scholar
- 19.Chiron, D.: On the definitions of Sobolev and BV spaces into singular spaces and the trace problem. Commun. Contemp. Math. 9(04), 473–513 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Elsevier, Amsterdam (1978)zbMATHGoogle Scholar
- 21.Convent, A., Van Schaftingen, J.: Intrinsic colocal weak derivatives and Sobolev spaces between manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 16(5), 97–128 (2016)MathSciNetzbMATHGoogle Scholar
- 22.Convent, A., Van Schaftingen, J.: Higher order weak differentiability and Sobolev spaces between manifolds (2017). arXiv preprint 1702.07171Google Scholar
- 23.de Gennes, P., Prost, J.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1993)Google Scholar
- 24.Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 2nd edn. Academic, Boston (1990)zbMATHGoogle Scholar
- 25.Fert, A., Reyren, N., Cros, V.: Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2(17031) (2017)Google Scholar
- 26.Focardi, M., Spadaro, E.: An intrinsic approach to manifold constrained variational problems. Ann. Mat. Pura Appl. 192(1), 145–163 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10(4), 215–310 (1948)MathSciNetzbMATHGoogle Scholar
- 28.Gawlik, E.S., Leok, M.: Embedding-based interpolation on the special orthogonal group. SIAM J. Sci. Comput. 40(2), A721–A746 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Gawlik, E.S., Leok, M.: Interpolation on symmetric spaces via the generalized polar decomposition. Found. Comput. Math. 18(3), 757–788 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Giaquinta, M., Hildebrandt, S.: Calculus of Variations I. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2004). https://books.google.de/books?id=4NWZdMBH1fsC
- 31.Grohs, P.: Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal. 33(3), 849–874 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Found. Comput. Math. 15(6), 1357–1411 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Grohs, P., Hardering, H., Sander, O., Sprecher, M.: Projection-based finite elements for nonlinear function spaces. SIAM J. Numer. Anal. 57(1), 404–428 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Hajłasz, P.: Sobolev mappings between manifolds and metric spaces. In: Sobolev Spaces in Mathematics I. International Mathematical Series, vol. 8, pp. 185–222. Springer, Berlin (2009)Google Scholar
- 35.Hajlasz, P., Tyson, J.: Sobolev peano cubes. Michigan Math. J. 56(3), 687–702 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Hardering, H.: Intrinsic discretization error bounds for geodesic finite elements. Ph.D. thesis, Freie Universität Berlin (2015)Google Scholar
- 37.Hardering, H.: The Aubin–Nitsche trick for semilinear problems (2017). arXiv e-prints arXiv:1707.00963Google Scholar
- 38.Hardering, H.: L 2-discretization error bounds for maps into Riemannian manifolds (2018). ArXiv preprint 1612.06086Google Scholar
- 39.Hardering, H.: L 2-discretization error bounds for maps into Riemannian manifolds. Numer. Math. 139(2), 381–410 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, 2nd edn. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
- 41.Hélein, F., Wood, J.C.: Harmonic maps. In: Handbook of Global Analysis, pp. 417–491. Elsevier, Amsterdam (2008)Google Scholar
- 42.Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differ. Equ. 2(2), 173–204 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Jost, J.: Riemannian Geometry and Geometric Analysis, 6th edn. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
- 44.Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Ketov, S.V.: Quantum Non-linear Sigma-Models. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
- 46.Korevaar, N.J., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Commun. Anal. Geom. 1(4), 561–659 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Bull. Tokyo Gakugei Univ. 40, 1–29 (1997)MathSciNetzbMATHGoogle Scholar
- 48.Kružík, M., Prohl, A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48(3), 439–483 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2003)CrossRefGoogle Scholar
- 50.Melcher, C.: Chiral skyrmions in the plane. Proc. R. Soc. A 470(2172) (2014)Google Scholar
- 51.Mielke, A.: Finite elastoplasticity Lie groups and geodesics on SL(d). In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 61–90. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
- 52.Münch, I.: Ein geometrisch und materiell nichtlineares Cosserat-Modell – Theorie, Numerik und AnwendungsmöglichkeitenGoogle Scholar
- 53.Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space. Sib. Mat. Zh. 38(3), 657–675 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
- 54.Rubin, M.: Cosserat Theories: Shells, Rods, and Points. Springer, Dordrecht (2000)zbMATHCrossRefGoogle Scholar
- 55.Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2010)MathSciNetzbMATHGoogle Scholar
- 56.Sander, O.: Geodesic finite elements on simplicial grids. Int. J. Numer. Methods Eng. 92(12), 999–1025 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.Sander, O.: Geodesic finite elements of higher order. IMA J. Numer. Anal. 36(1), 238–266 (2016)MathSciNetzbMATHGoogle Scholar
- 58.Sander, O.: Test function spaces for geometric finite elements (2016). ArXiv e-prints 1607.07479Google Scholar
- 59.Sander, O., Neff, P., Bîrsan, M.: Numerical treatment of a geometrically nonlinear planar Cosserat shell model. Comput. Mech. 57(5), 817–841 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 60.Shatah, J., Struwe, M.: Geometric Wave Equations. American Mathematical Society, Providence (2000)zbMATHCrossRefGoogle Scholar
- 61.Simo, J., Fox, D., Rifai, M.: On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. Eng. 79(1), 21–70 (1990)zbMATHGoogle Scholar
- 62.Sprecher, M.: Numerical methods for optimization and variational problems with manifold-valued data. Ph.D. thesis, ETH Zürich (2016)Google Scholar
- 63.Stahl, S.: The Poincaré Half-Plane – A Gateway to Modern Geometry. Jones and Bartlett Publishers, Burlington (1993)zbMATHGoogle Scholar
- 64.Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(1), 558–581 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
- 65.Walther, A., Griewank, A.: Getting started with ADOL-C. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing. Computational Science, pp. 181–202. Chapman-Hall CRC, Boca Raton (2012)CrossRefGoogle Scholar
- 66.Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 67.Wriggers, P., Gruttmann, F.: Thin shells with finite rotations formulated in Biot stresses: theory and finite element formulation. Int. J. Numer. Methods Eng. 36, 2049–2071 (1993)zbMATHCrossRefGoogle Scholar
- 68.Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. 1. Springer, New York (1986)zbMATHCrossRefGoogle Scholar