Geometric Finite Elements



Geometric finite elements (GFE) generalize the idea of Galerkin methods to variational problems for unknowns that map into nonlinear spaces. In particular, GFE methods introduce proper discrete function spaces that are conforming in the sense that values of geometric finite element functions are in the codomain manifold \(\mathcal {M}\) at any point. Several types of such spaces have been constructed, and some are even completely intrinsic, i.e., they can be defined without any surrounding space. GFE spaces enable the elegant numerical treatment of variational problems posed in Sobolev spaces with nonlinear codomain space. Indeed, as GFE spaces are geometrically conforming, such variational problems have natural formulations in GFE spaces. These correspond to the discrete formulations of classical finite element methods. Also, the canonical projection onto the discrete maps commutes with the differential for a suitable notion of the tangent bundle as a manifold, and we therefore also obtain natural weak formulations. Rigorous results exist that show the optimal behavior of the a priori L2 and H1 errors under reasonable smoothness assumptions. Although the discrete function spaces are no vector spaces, their elements can nevertheless be described by sets of coefficients, which live in the codomain manifold. Variational discrete problems can then be reformulated as algebraic minimization problems on the set of coefficients. These algebraic problems can be solved by established methods of manifold optimization. This text will explain the construction of several types of GFE spaces, discuss the corresponding test function spaces, and sketch the a priori error theory. It will also show computations of the harmonic maps problem, and of two example problems from nanomagnetics and plate mechanics.


  1. 1.
    Abatzoglou, T.J.: The minimum norm projection on C 2-manifolds in \(\mathbb {R}^n\). Trans. Am. Math. Soc. 243, 115–122 (1978)Google Scholar
  2. 2.
    Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Absil, P.A., Mahony, R., Trumpf, J.: An extrinsic look at the Riemannian Hessian. In: Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 361–368. Springer, Berlin (2013)Google Scholar
  4. 4.
    Absil, P.A., Gousenbourger, P.Y., Striewski, P., Wirth, B.: Differentiable piecewise-Bézier surfaces on Riemannian manifolds. SIAM J. Imaging Sci. 9(4), 1788–1828 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Alouges, F., Jaisson, P.: Convergence of a finite element discretization for the landau–lifshitz equations in micromagnetism. Math. Models Methods Appl. Sci. 16(2), 299–316 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ambrosio, L.: Metric space valued functions of bounded variation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17(3), 439–478 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Springer, Berlin (2006)zbMATHGoogle Scholar
  9. 9.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRefGoogle Scholar
  10. 10.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bartels, S., Prohl, A.: Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comput. 76(260), 1847–1859 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Baumgarte, T.W., Shapiro, S.L.: Numerical Relativity – Solving Einstein’s Equations on the Computer. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Belavin, A., Polyakov, A.: Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22(10), 245–247 (1975)Google Scholar
  14. 14.
    Bergmann, R., Laus, F., Persch, J., Steidl, G.: Processing manifold-valued images. SIAM News 50(8), 1,3 (2017)Google Scholar
  15. 15.
    Berndt, J., Boeckx, E., Nagy, P.T., Vanhecke, L.: Geodesics on the unit tangent bundle. Proc. R. Soc. Edinb. A Math. 133(06), 1209–1229 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Bogdanov, A., Hubert, A.: Thermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255–269 (1994)CrossRefGoogle Scholar
  17. 17.
    Buss, S.R., Fillmore, J.P.: Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 95–126 (2001)CrossRefGoogle Scholar
  18. 18.
    Cartan, E.: Groupes simples clos et ouverts et géométrie riemannienne. J. Math. Pures Appl. 8, 1–34 (1929)zbMATHGoogle Scholar
  19. 19.
    Chiron, D.: On the definitions of Sobolev and BV spaces into singular spaces and the trace problem. Commun. Contemp. Math. 9(04), 473–513 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Elsevier, Amsterdam (1978)zbMATHGoogle Scholar
  21. 21.
    Convent, A., Van Schaftingen, J.: Intrinsic colocal weak derivatives and Sobolev spaces between manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. 16(5), 97–128 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Convent, A., Van Schaftingen, J.: Higher order weak differentiability and Sobolev spaces between manifolds (2017). arXiv preprint 1702.07171Google Scholar
  23. 23.
    de Gennes, P., Prost, J.: The Physics of Liquid Crystals. Clarendon Press, Oxford (1993)Google Scholar
  24. 24.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 2nd edn. Academic, Boston (1990)zbMATHGoogle Scholar
  25. 25.
    Fert, A., Reyren, N., Cros, V.: Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2(17031) (2017)Google Scholar
  26. 26.
    Focardi, M., Spadaro, E.: An intrinsic approach to manifold constrained variational problems. Ann. Mat. Pura Appl. 192(1), 145–163 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10(4), 215–310 (1948)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Gawlik, E.S., Leok, M.: Embedding-based interpolation on the special orthogonal group. SIAM J. Sci. Comput. 40(2), A721–A746 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Gawlik, E.S., Leok, M.: Interpolation on symmetric spaces via the generalized polar decomposition. Found. Comput. Math. 18(3), 757–788 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Giaquinta, M., Hildebrandt, S.: Calculus of Variations I. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2004).
  31. 31.
    Grohs, P.: Quasi-interpolation in Riemannian manifolds. IMA J. Numer. Anal. 33(3), 849–874 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Grohs, P., Hardering, H., Sander, O.: Optimal a priori discretization error bounds for geodesic finite elements. Found. Comput. Math. 15(6), 1357–1411 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Grohs, P., Hardering, H., Sander, O., Sprecher, M.: Projection-based finite elements for nonlinear function spaces. SIAM J. Numer. Anal. 57(1), 404–428 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Hajłasz, P.: Sobolev mappings between manifolds and metric spaces. In: Sobolev Spaces in Mathematics I. International Mathematical Series, vol. 8, pp. 185–222. Springer, Berlin (2009)Google Scholar
  35. 35.
    Hajlasz, P., Tyson, J.: Sobolev peano cubes. Michigan Math. J. 56(3), 687–702 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Hardering, H.: Intrinsic discretization error bounds for geodesic finite elements. Ph.D. thesis, Freie Universität Berlin (2015)Google Scholar
  37. 37.
    Hardering, H.: The Aubin–Nitsche trick for semilinear problems (2017). arXiv e-prints arXiv:1707.00963Google Scholar
  38. 38.
    Hardering, H.: L 2-discretization error bounds for maps into Riemannian manifolds (2018). ArXiv preprint 1612.06086Google Scholar
  39. 39.
    Hardering, H.: L 2-discretization error bounds for maps into Riemannian manifolds. Numer. Math. 139(2), 381–410 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Hélein, F.: Harmonic Maps, Conservation Laws and Moving Frames, 2nd edn. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  41. 41.
    Hélein, F., Wood, J.C.: Harmonic maps. In: Handbook of Global Analysis, pp. 417–491. Elsevier, Amsterdam (2008)Google Scholar
  42. 42.
    Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Partial Differ. Equ. 2(2), 173–204 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Jost, J.: Riemannian Geometry and Geometric Analysis, 6th edn. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  44. 44.
    Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Ketov, S.V.: Quantum Non-linear Sigma-Models. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  46. 46.
    Korevaar, N.J., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Commun. Anal. Geom. 1(4), 561–659 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles – a classification. Bull. Tokyo Gakugei Univ. 40, 1–29 (1997)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Kružík, M., Prohl, A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48(3), 439–483 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2003)CrossRefGoogle Scholar
  50. 50.
    Melcher, C.: Chiral skyrmions in the plane. Proc. R. Soc. A 470(2172) (2014)Google Scholar
  51. 51.
    Mielke, A.: Finite elastoplasticity Lie groups and geodesics on SL(d). In: Newton, P., Holmes, P., Weinstein, A. (eds.) Geometry, Mechanics, and Dynamics, pp. 61–90. Springer, New York (2002)zbMATHCrossRefGoogle Scholar
  52. 52.
    Münch, I.: Ein geometrisch und materiell nichtlineares Cosserat-Modell – Theorie, Numerik und AnwendungsmöglichkeitenGoogle Scholar
  53. 53.
    Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space. Sib. Mat. Zh. 38(3), 657–675 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Rubin, M.: Cosserat Theories: Shells, Rods, and Points. Springer, Dordrecht (2000)zbMATHCrossRefGoogle Scholar
  55. 55.
    Sander, O.: Geodesic finite elements for Cosserat rods. Int. J. Numer. Methods Eng. 82(13), 1645–1670 (2010)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Sander, O.: Geodesic finite elements on simplicial grids. Int. J. Numer. Methods Eng. 92(12), 999–1025 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Sander, O.: Geodesic finite elements of higher order. IMA J. Numer. Anal. 36(1), 238–266 (2016)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Sander, O.: Test function spaces for geometric finite elements (2016). ArXiv e-prints 1607.07479Google Scholar
  59. 59.
    Sander, O., Neff, P., Bîrsan, M.: Numerical treatment of a geometrically nonlinear planar Cosserat shell model. Comput. Mech. 57(5), 817–841 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Shatah, J., Struwe, M.: Geometric Wave Equations. American Mathematical Society, Providence (2000)zbMATHCrossRefGoogle Scholar
  61. 61.
    Simo, J., Fox, D., Rifai, M.: On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. Eng. 79(1), 21–70 (1990)zbMATHGoogle Scholar
  62. 62.
    Sprecher, M.: Numerical methods for optimization and variational problems with manifold-valued data. Ph.D. thesis, ETH Zürich (2016)Google Scholar
  63. 63.
    Stahl, S.: The Poincaré Half-Plane – A Gateway to Modern Geometry. Jones and Bartlett Publishers, Burlington (1993)zbMATHGoogle Scholar
  64. 64.
    Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(1), 558–581 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Walther, A., Griewank, A.: Getting started with ADOL-C. In: Naumann, U., Schenk, O. (eds.) Combinatorial Scientific Computing. Computational Science, pp. 181–202. Chapman-Hall CRC, Boca Raton (2012)CrossRefGoogle Scholar
  66. 66.
    Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Wriggers, P., Gruttmann, F.: Thin shells with finite rotations formulated in Biot stresses: theory and finite element formulation. Int. J. Numer. Methods Eng. 36, 2049–2071 (1993)zbMATHCrossRefGoogle Scholar
  68. 68.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. 1. Springer, New York (1986)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technische Universität DresdenInstitut für Numerische MathematikDresdenGermany

Personalised recommendations