Skip to main content

Statistical Analysis of Trajectories of Multi-Modality Data

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data
  • 1658 Accesses

Abstract

We develop a novel comprehensive Riemannian framework for analyzing, summarizing and clustering trajectories of multi-modality data. Our framework relies on using elastic representations of functions, curves and trajectories. The elastic representations not only provide proper distances, but also solve the problem of registration. We propose a proper Riemannian metric, which is a weighted average of distances on product spaces. The metric allows for joint comparison and registration of multi-modality data. Specifically, we apply our framework to detect stimulus-relevant fiber pathways and summarize projection pathways. We evaluate our method on two real data sets. Experimental results show that we can cluster fiber pathways correctly and compute better summaries of projection pathways. The proposed framework can also be easily generalized to various applications where multi-modality data exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, A.L., Lee, J.E., Lazar, M., Boudos, R., DuBray, M.B., Oakes, T.R., Miller, J.N., Lu, J., Jeong, E.K., McMahon, W.M., Bigler, E.D., Lainhart, J.E.: Diffusion tensor imaging of the corpus callosum in autism. NeuroImage 34(1), 61–73 (2007)

    Article  Google Scholar 

  2. Batchelor, P.G., Calamante, F., Tournier, J.-D., Atkinson, D., Hill, D.L.G., Connelly, A.: Quantification of the shape of fiber tracts. Magn. Reson. Med. 55(4), 894–903 (2006)

    Article  Google Scholar 

  3. Bertsekas, D.P.: Dynamic Programming and Optimal Control. 3rd and 4th edn. Athena Scientific, Nashua (2011)

    Google Scholar 

  4. Besse, P.C., Cardot, H.: Approximation spline de la prévision d’un processus fonctionnel autorégressif d’ordre 1. Can. J. Stat. 24(4), 467–487 (1996)

    Article  Google Scholar 

  5. Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Med. Image Anal. 10(5), 786–798 (2006)

    Article  Google Scholar 

  6. Cousineau, M., Jodoin, P.M., Garyfallidis, E., Côté, M.A., Morency, F.C., Rozanski, V., Grand’Maison, M., Bedell, B.J., Descoteaux, M.: A test-retest study on Parkinson’s PPMI dataset yields statistically significant white matter fascicles. Neuroimage Clin. 16, 222–233 (2017)

    Article  Google Scholar 

  7. de Reus, M.A., van den Heuvel, M.P.: The parcellation-based connectome: limitations and extensions. NeuroImage 80, 397–404 (2013). Mapping the Connectome

    Google Scholar 

  8. Ding, Z., Gore, J.C., Anderson, A.W.: Classification and quantification of neuronal fiber pathways using diffusion tensor MRI. Magn. Reson. Med. 49(4), 716–721 (2003)

    Article  Google Scholar 

  9. Ding, Z., Huang, Y., Bailey, S.K., Gao, Y., Cutting, L.E., Rogers, B.P., Newton, A.T., Gore, J.C.: Detection of synchronous brain activity in white matter tracts at rest and under functional loading. In: Proceedings of the National Academy of Sciences (2018)

    Google Scholar 

  10. Dryden, I.L., Koloydenko, A., Zhou, D.: Non-euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3(3), 1102–1123 (2009)

    Article  MathSciNet  Google Scholar 

  11. Evangelou, N., Konz, D., Esiri, M.M., Smith, S., Palace, J., Matthews, P.M.: Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123, 1845–1849 (2000)

    Article  Google Scholar 

  12. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Proc. 87(2), 250–262 (2007). Tensor Signal Processing

    Google Scholar 

  13. Foong, J., Maier, M., Clark, C.A., Barker, G.J., Miller, D.H., Ron, M.A.: Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J. Neurol. Neurosurg. Psychiatry 68(2), 242–244 (2000)

    Article  Google Scholar 

  14. Garyfallidis, E., Côté, M.A., Rheault, F., Sidhu, J., Hau, J., Petit, L., Fortin, D., Cunanne, S., Descoteaux, M.: Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage 170, 283–295 (2018). Segmenting the Brain

    Google Scholar 

  15. Goodlett, C.B., Fletcher, P.T., Gilmore, J.H., Gerig, G.: Group analysis of DTI fiber tract statistics with application to neurodevelopment. NeuroImage 45, S133–S142 (2008)

    Article  Google Scholar 

  16. Guevara, M., Román, C., Houenou, J., Duclap, D., Poupon, C., Mangin, J.F., Guevara, P.: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. NeuroImage 147, 703–725 (2017)

    Article  Google Scholar 

  17. Jin, Y., Shi, Y., Zhan, L., Gutman, B.A., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100, 75–90 (2014)

    Article  Google Scholar 

  18. Johnstone, I.M., Lu, A.Y., Nadler, B., Witten, D.M., Hastie, T., Tibshirani, R., Ramsay, J.O.: On consistency and sparsity for principal components analysis in high dimensions. J. Am. Stat. Assoc. 104(486), 682–703 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kurtek, S., Srivastava, A., Klassen, E., Ding, Z.: Statistical modeling of curves using shapes and related features. J. Am. Stat. Assoc. 107(499), 1152–1165 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lee, J.E., Chung, M.K., Lazar, M., DuBray, M.B., Kim, J., Bigler, E.D., Lainhart, J.E., Alexander, A.L.: A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. NeuroImage 44(3), 870–883 (2009)

    Article  Google Scholar 

  21. Leemans, A., Sijbers, J., De Backer, S., Vandervliet, E., Parizel, P.: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data. Magn. Reson. Med. 55(6), 1414–1423 (2006)

    Article  Google Scholar 

  22. Maddah, M., Grimson, W.E.L., Warfield, S.K., Wells, W.M.: A unified framework for clustering and quantitative analysis of white matter fiber tracts. J. Med. Image Anal. 12(2), 191–202 (2008)

    Article  Google Scholar 

  23. Mani, M., Kurtek, S., Barillot, C., Srivastava, A.: A comprehensive riemannian framework for the analysis of white matter fiber tracts. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1101–1104 (2010)

    Google Scholar 

  24. Marron, J.S., Ramsay, J.O., Sangalli, L.M., Srivastava, A.: Functional data analysis of amplitude and phase variation. Stat. Sci. 30(4), 468–484 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  26. O’Donnell, L.J., Westin, C.F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26, 1562–1575 (2007)

    Article  Google Scholar 

  27. O’Donnell, L.J., Golby, A.J., Westin, C.-F.: Fiber clustering versus the parcellation-based connectome. NeuroImage 80, 283–289 (2013). Mapping the Connectome

    Google Scholar 

  28. Olivetti, E., Berto, G., Gori, P., Sharmin, N., Avesani, P.: Comparison of distances for supervised segmentation of white matter tractography. In: 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 1–4 (2017)

    Google Scholar 

  29. Ramírez, J., Orini, M., Tucker, J.D., Pueyo, E., Laguna, P.: Variability of ventricular repolarization dispersion quantified by time-warping the morphology of the T-waves. IEEE Trans. Biomed. Eng. 64(7), 1619–1630 (2017)

    Article  Google Scholar 

  30. Ramsay, J., Silverman, B.W.: Functional Data Analysis. Springer in Statistics. Springer, Berlin (2010)

    Google Scholar 

  31. Ramsay, J.O., Hooker, G., Graves, S.: Functional Data Analysis with R and MATLAB, 1st edn. Springer, Berlin (2009)

    Book  Google Scholar 

  32. Schwartzman, A.: Random ellipsoids and false discovery rates: statistics for diffusion tensor imaging data. Ph.D. Thesis, Stanford University (2006)

    Google Scholar 

  33. Schwartzman, A., Mascarenhas, W.F., Taylor, J.E., Inference for eigenvalues and eigenvectors of gaussian symmetric matrices. Ann. Statist. 36(6), 2886–2919 (2008)

    Article  MathSciNet  Google Scholar 

  34. Schwarz, C.G., Reid, R.I., Gunter, J.L., Senjem, M.L., Przybelski, S.A., Zuk, S.M., Whitwell, J.L., Vemuri, P., Josephs, K.A., Kantarci, K., Thompson, P.M., Petersen, R.C., Jack, C.R.: Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics. NeuroImage 94, 65–78 (2014)

    Article  Google Scholar 

  35. Srivastava, A., Joshi, S.H., Mio, W., Liu, X.: Statistical shape analysis: clustering, learning, and testing. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 590–602 (2005)

    Article  Google Scholar 

  36. Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  37. Srivastava, A., Kurtek, S., Wu, W., Klassen, E., Marron, J.S.: Registration of functional data using fisher-rao metric. arXiv:1103.3817 (2011)

    Google Scholar 

  38. Staniswalis, J.G., Lee, J.J.: Nonparametric regression analysis of longitudinal data. J. Am. Stat. Assoc. 93(444), 1403–1418 (1998)

    Article  MathSciNet  Google Scholar 

  39. Su, J., Kurtek, S., Klassen, E., Srivastava, A.: Statistical analysis of trajectories on riemannian manifolds: bird migration, hurricane tracking and video surveillance. Ann. Appl. Stat. 8(1), 530–552 (2014)

    Article  MathSciNet  Google Scholar 

  40. Su, J., Srivastava, A., Souza, F.D.M.D., Sarkar, S.: Rate-invariant analysis of trajectories on riemannian manifolds with application in visual speech recognition. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 620–627 (2014)

    Google Scholar 

  41. Tucker, J.D., Wu, W., Srivastava, A.: Generative models for functional data using phase and amplitude separation. Comput. Stat. Data Anal. 61, 50–66 (2013)

    Article  MathSciNet  Google Scholar 

  42. Tucker, J.D., Wu, W., Srivastava, A.: Analysis of proteomics data: phase amplitude separation using an extended fisher-rao metric. Electron. J. Statist. 8(2), 1724–1733 (2014)

    Article  Google Scholar 

  43. Tucker, J.D., Lewis, J.R., Srivastava, A.: Elastic functional principal component regression. Stat. Anal. Data Mining ASA Data Sci. J. 12(2), 101–115 (2019)

    Article  MathSciNet  Google Scholar 

  44. Wang, D., Luo, Y., Mok, V.C.T., Chu, W.C.W., Shi, L.: Tractography atlas-based spatial statistics: statistical analysis of diffusion tensor image along fiber pathways. NeuroImage 125, 301–310 (2016)

    Article  Google Scholar 

  45. Wassermann, D., Deriche, R.: Simultaneous manifold learning and clustering: grouping white matter fiber tracts using a volumetric white matter atlas. In: MICCAI 2008 Workshop – Manifolds in Medical Imaging: Metrics, Learning and Beyond (2008)

    Google Scholar 

  46. Wu, X., Yang, Z., Bailey, S.K., Zhou, J., Cutting, L.E., Gore, J.C., Ding, Z.: Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations. NeuroImage 152, 371–380 (2017)

    Article  Google Scholar 

  47. Zhang, S., Correia, S., Laidlaw, D.: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method. IEEE Trans. Vis. Comput. Graph. 14, 1044–1053 (2008)

    Article  Google Scholar 

  48. Zhang, Z., Descoteaux, M., Zhang, J., Girard, G., Chamberland, M., Dunson, D., Srivastava, A., Zhu, H.: Mapping population-based structural connectomes. NeuroImage 172, 130–145 (2018)

    Article  Google Scholar 

  49. Zhang, Z., Descoteaux, M., Dunson, D.: Nonparametric bayes models of fiber curves connecting brain regions. J. Am. Stat. Assoc. 12, 1–23 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Zhu, H., Kong, L., Li, R., Styner, M., Gerig, G., Lin, W., Gilmore, J.H.: FADTTS: functional analysis of diffusion tensor tract statistics. NeuroImage 56(3), 1412–1425 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyong Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Su, J., Guo, M., Yang, Z., Ding, Z. (2020). Statistical Analysis of Trajectories of Multi-Modality Data. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_14

Download citation

Publish with us

Policies and ethics