Abstract
Geometric statistics aim at shifting the classical paradigm for inference from points in a Euclidean space to objects living in a non-linear space, in a consistent way with the underlying geometric structure considered. In this chapter, we illustrate some recent advances of geometric statistics for dimension reduction in manifolds. Beyond the mean value (the best zero-dimensional summary statistics of our data), we want to estimate higher dimensional approximation spaces fitting our data. We first define a family of natural parametric geometric subspaces in manifolds that generalize the now classical geodesic subspaces: barycentric subspaces are implicitly defined as the locus of weighted means of k + 1 reference points with positive or negative weights summing up to one. Depending on the definition of the mean, we obtain the Fréchet, Karcher or Exponential Barycentric subspaces (FBS/KBS/EBS). The completion of the EBS, called the affine span of the points in a manifold is the most interesting notion as it defines complete sub-(pseudo)-spheres in constant curvature spaces. Barycentric subspaces can be characterized very similarly to the Euclidean case by the singular value decomposition of a certain matrix or by the diagonalization of the covariance and the Gram matrices. This shows that they are stratified spaces that are locally manifolds of dimension k at regular points. Barycentric subspaces can naturally be nested by defining an ordered series of reference points in the manifold. This allows the construction of inductive forward or backward properly nested sequences of subspaces approximating data points. These flags of barycentric subspaces generalize the sequence of nested linear subspaces (flags) appearing in the classical Principal Component Analysis. We propose a criterion on the space of flags, the accumulated unexplained variance (AUV), whose optimization exactly lead to the PCA decomposition in Euclidean spaces. This procedure is called barycentric subspace analysis (BSA). We illustrate the power of barycentric subspaces in the context of cardiac imaging with the estimation, analysis and reconstruction of cardiac motion from sequences of images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Page 259: “It is not certain that such an element exists nor that it is unique.”
- 2.
Note III on normal spaces with negative or null Riemannian curvature, p. 267.
- 3.
Appliquons au point origine O les différents déplacements définis par les transformations de γ. Le groupe γ étant clos, nous obtenons ainsi une variété fermée V (qui peut se réduire à un point). Or, dans un espace de Riemann sans point singulier à distance finie, simplement connexe, a courbure negative ou nulle, on peut trouver, étant donnés des points en nombre fini, un point fixe invariant par tous les déplacements qui échangent entre eux les points donnés: c’est le point pour lequel la somme des carrés des distances au point donné est minima [4, p. 267]. Cette propriété est encore vraie si, au lieu d’un nombre fini de points, on en a une infinité formant une variété fermée: nous arrivons donc à la conclusion que le groupe γ qui laisse évidemment invariante la variété V, laisse invariant un point fixe de l’espace, il fait done partie du groupe des rotations (isométriques) autour de ce point. Mais ce groupe est homologue à g dans le groupe adjoint continu, ce qui démontre le théoreme.
- 4.
p-jets are equivalent classes of functions up to order p. Thus, a p-jet specifies the Taylor expansion of a smooth function up to order p. Non-local jets, or multijets, generalize subspaces of the tangent spaces to higher differential orders with multiple base points.
References
Afsari, B.: Riemannian L p center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139(2), 655–673 (2011)
Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)
Buser, P., Karcher, H.: Gromov’s Almost Flat Manifolds. Number 81 in Astérisque. Société mathématique de France (1981)
Cartan, E.: Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris (1928)
Cartan, E.: Groupes simples clos et ouverts et géométrie riemannienne. J. Math. Pures Appl. 9e série(tome 8), 1–34 (1929)
Damon, J., Marron, J.S.: Backwards principal component analysis and principal nested relations. J. Math. Imaging Vision 50(1–2), 107–114 (2013)
Darling, R.W.R.: Geometrically intrinsic nonlinear recursive filters II: foundations (1998). arXiv:math/9809029
Ding, C., Zhou, D., He, X., Zha, H.: R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 281–288. ACM, New York (2006)
Dryden, I., Mardia, K.: Theoretical and distributional aspects of shape analysis. In: Probability Measures on Groups, X (Oberwolfach, 1990), pp. 95–116, Plenum, New York (1991)
Edelman, A., Arias, T., Smith, S.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)
Emery, M., Mokobodzki, G.: Sur le barycentre d’une probabilité dans une variété. In: Séminaire de Probabilités XXV, vol. 1485, pp. 220–233. Springer, Berlin (1991)
Feragen, A., Owen, M., Petersen, J., Wille, M.M.W., Thomsen, L.H., Dirksen, A., de Bruijne, M.: Tree-space statistics and approximations for large-scale analysis of anatomical trees. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) Information Processing in Medical Imaging, pp. 74–85. Springer, Berlin (2013)
Fletcher, P., Lu, C., Pizer, S., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)
Fréchet, M.: Valeurs moyennes attachées a un triangle aléatoire. La Revue Scientifique, Fascicule 10, 475–482 (1943)
Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincare 10, 215–310 (1948)
Gramkow, C.: On averaging rotations. Int. J. Comput. Vis. 42(1–2), 7–16 (2001)
Grenander, U., Miller, M., Srivastava, A.: Hilbert-Schmidt lower bounds for estimators on matrix Lie groups for ATR. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 790–802 (1998)
Grove, K., Karcher, H.: How to conjugate C1-close group actions. Math. Z. 132(1), 11–20 (1973)
Huckemann, S., Ziezold, H.: Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces. Adv. Appl. Probab. 38(2), 299–319 (2006)
Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Stat. Sin. 20, 1–100 (2010)
Jung, S., Dryden, I.L., Marron, J.S.: Analysis of principal nested spheres. Biometrika 99(3), 551–568 (2012)
Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)
Karcher, H.: Riemannian center of mass and so called Karcher mean (2014). arXiv:1407.2087
Kendall, D.: A survey of the statistical theory of shape (with discussion). Stat. Sci. 4, 87–120 (1989)
Kendall, W.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 61(2), 371–406 (1990)
Kwak., N.: Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1672–1680 (2008)
Le, H.: Locating Fréchet means with application to shape spaces. Adv. Appl. Probab. 33, 324–338 (2001)
Le, H.: Estimation of Riemannian barycenters. LMS J. Comput. Math. 7, 193–200 (2004)
Le, H., Kendall, D.: The Riemannian structure of Euclidean shape space: a novel environment for statistics. Ann. Stat. 21, 1225–1271 (1993)
Leporé, N., Brun, C., Chou, Y.-Y., Lee, A., Barysheva, M., Pennec, X., McMahon, K., Meredith, M., De Zubicaray, G., Wright, M., Toga, A.W., Thompson, P.: Best individual template selection from deformation tensor minimization. In: Proceedings of the 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’08), Paris, pp. 460–463 (2008)
Lorenzi, M., Pennec, X.: Geodesics, Parallel transport and one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis. 105(2), 111–127 (2013)
Marron, J.S., Alonso, A.M.: Overview of object oriented data analysis. Biom. J. 56(5), 732–753 (2014)
Mcleod, K., Sermesant, M., Beerbaum, P., Pennec, X.: Spatio-temporal tensor decomposition of a polyaffine motion model for a better analysis of pathological left ventricular dynamics. IEEE Trans. Med. Imaging 34(7), 1562–1675 (2015)
Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24(1), 1–16 (2002)
Oller, J., Corcuera, J.: Intrinsic analysis of statistical estimation. Ann. Stat. 23(5), 1562–1581 (1995)
Pennec, X.: Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements. In: Cetin, A.E., Akarun, L., Ertuzun, A., Gurcan, M.N., Yardimci, Y. (eds.) Proceedings of Nonlinear Signal and Image Processing (NSIP’99), vol. 1, pp. 194–198. IEEE-EURASIP, Antalya (1999)
Pennec, X.: Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006). A preliminary appeared as INRIA RR-5093, 2004
Pennec, X.: Sample-limited L p barycentric subspace analysis on constant curvature spaces. In: Geometric Sciences of Information (GSI 2017), vol. 10589, pp. 20–28. Springer, Berlin (2017)
Pennec, X: Barycentric subspace analysis on manifolds. Ann. Stat. 46(6A), 2711–2746 (2018)
Pennec, X., Arsigny, V.: Exponential Barycenters of the Canonical Cartan Connection and Invariant Means on Lie Groups. In: Barbaresco, F., Mishra, A., Nielsen, F. (eds.) Matrix Information Geometry, pp. 123–168. Springer, Berlin (2012)
Pennec, X., Lorenzi, M.: Beyond Riemannian Geometry The affine connection setting for transformation groups chapter 5. In: Pennec, S.S.X., Fletcher, T. (eds.) Riemannian Geometric Statistics in Medical Image Analysis. Elsevier, Amsterdam (2019)
Pennec, X., Guttmann, C.R., Thirion, J.-P.: Feature-based registration of medical images: estimation and validation of the pose accuracy. In: Proceedings of First International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI’98). LNCS, vol. 1496, pp. 1107–1114. Springer, Berlin (1998)
Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006). A preliminary version appeared as INRIA Research Report 5255, 2004
Rohé, M.-M., Sermesant, M., Pennec, X.: Barycentric subspace analysis: a new symmetric group-wise paradigm for cardiac motion tracking. In: 19th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2016. Lecture Notes in Computer Science, vol. 9902, pp. 300–307, Athens (2016)
Rohé, M.-M., Sermesant, M., Pennec, X.: Low-dimensional representation of cardiac motion using barycentric subspaces: a new group-wise paradigm for estimation, analysis, and reconstruction. Med. Image Anal. 45, 1–12 (2018)
Small, C.: The Statistical Theory of Shapes. Springer Series in Statistics. Springer, Berlin (1996)
Sommer, S.: Horizontal Dimensionality Reduction and Iterated Frame Bundle Development. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 76–83. Springer, Berlin (2013)
Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2013)
Tobon-Gomez, C., De Craene, M., Mcleod, K., Tautz, L., Shi, W., Hennemuth, A., Prakosa, A., Wang, H., Carr-White, G., Kapetanakis, S., Lutz, A., Rasche, V., Schaeffter, T., Butakoff, C., Friman, O., Mansi, T., Sermesant, M., Zhuang, X., Ourselin, S., Peitgen, H.O., Pennec, X., Razavi, R., Rueckert, D., Frangi, A.F., Rhode, K.: Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med. Image Anal. 17(6), 632–648 (2013)
Weyenberg, G.S.: Statistics in the Billera–Holmes–Vogtmann treespace. PhD thesis, University of Kentucky, 2015
Yang, L.: Riemannian median and its estimation. LMS J. Comput. Math. 13, 461–479 (2010)
Yang, L.: Medians of probability measures in Riemannian manifolds and applications to radar target detection. PhD thesis, Poitier University, 2011
Zhai, H.: Principal component analysis in phylogenetic tree space. PhD thesis, University of North Carolina at Chapel Hill, 2016.
Ziezold, H.: On Expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In: Kožešnik, J. (ed.) Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians, vol. 7A, pp. 591–602. Springer, Netherlands (1977)
Acknowledgements
This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant G-Statistics No 786854).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Pennec, X. (2020). Advances in Geometric Statistics for Manifold Dimension Reduction. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-31351-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31350-0
Online ISBN: 978-3-030-31351-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)