Skip to main content

Diatom Classification Including Morphological Adaptations Using CNNs

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11867)

Abstract

Diatoms are a major group of aquatic microalgae. They are widely used in different fields such as environmental studies to estimate water quality. This paper presents the use of convolutional neural networks (CNNs) to identify diatoms during their life cycle. This life cycle involves morphological and other changes to the diatom frustule adding intraclass variance and making harder the classification task. The performance of CNNs is compared against a classical image classification scheme (i.e., feature extraction and classification) using a 14 classes dataset with a total number of 1085 images ranging from 40 to 120 images per class. Classification accuracy was 99.07% and 99.7% for CNNs and classical methods respectively.

Keywords

  • Classification
  • Deep learning
  • Diatom
  • Life cycle

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-31332-6_28
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-31332-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Source: http://alexlenail.me/NN-SVG/AlexNet.html

Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Blanco, S.: Diatom life cycle images dataset (2018). https://doi.org/10.6084/m9.figshare.7077725

  2. Blanco, S., Borrego-Ramos, M., Olenici, A.: Disentangling diatom species complexes: does morphometry suffice? PeerJ 5, e4159 (2017). https://doi.org/10.7717/peerj.4159

    CrossRef  Google Scholar 

  3. Bueno, G., et al.: Automated diatom classification (Part A): handcrafted feature approaches. Appl. Sci. 7(8), 753 (2017)

    CrossRef  Google Scholar 

  4. du Buf, H., Bayer, M.M.: Automatic Diatom Identification. Series in Machine Perception and Artificial Intelligence, vol. 51 (2002)

    Google Scholar 

  5. European Committee for Standardization: Water quality-guidance standard for the identification, enumeration and interpretation of benthic diatom samples from running waters. Technical report (2004)

    Google Scholar 

  6. Fischer, S., Šroubek, F., Perrinet, L., Redondo, R., Cristóbal, G.: Self-invertible 2D log-Gabor wavelets. Int. J. Comput. Vis. 75(2), 231–246 (2007)

    CrossRef  Google Scholar 

  7. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)

    CrossRef  Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition (2015). http://arxiv.org/abs/1512.03385

  10. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks (2016). http://arxiv.org/abs/1608.06993

  11. Huh, M., Agrawal, P., Efros, A.A.: What makes ImageNet good for transfer learning? (2016). http://arxiv.org/abs/1608.08614

  12. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 MB model size (2016). http://arxiv.org/abs/1602.07360

  13. Kassambara, A.: Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning, vol. 1. STHDA (2017)

    Google Scholar 

  14. Kovesi, P.: Phase congruency detects corners and edges. In: The Australian Pattern Recognition Society Conference: DICTA, vol. 2003 (2003)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  16. Kuhl, F.P., Giardina, C.R.: Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 18(3), 236–258 (1982)

    CrossRef  Google Scholar 

  17. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  18. Mann, D., Bayer, M.: Diatom size reduction image sets for shape and appearance models (2018). http://rbg-web2.rbge.org.uk/DIADIST/

  19. Mann, D.G., et al.: The Sellaphora pupula species complex (Bacillariophyceae): morphometric analysis, ultrastructure and mating data provide evidence for five new species. Phycologia 43(4), 459–482 (2004)

    CrossRef  Google Scholar 

  20. Mou, D., Stoermer, E.F.: Separating Tabellaria (Bacillariophyceae) shape groups based on Fourier descriptors. J. Phycol. 28(3), 386–395 (1992)

    CrossRef  Google Scholar 

  21. Pappas, J.L., Stoermer, E.F.: Legendre shape descriptors and shape group determination of specimens in the Cymbella cistula species complex. Phycologia 42(1), 90–97 (2003)

    CrossRef  Google Scholar 

  22. Pedraza, A., Bueno, G., Deniz, O., Cristóbal, G., Blanco, S., Borrego-Ramos, M.: Automated diatom classification (Part B): a deep learning approach. Appl. Sci. 7(5), 460 (2017)

    CrossRef  Google Scholar 

  23. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45(1), S199–S209 (2009)

    CrossRef  Google Scholar 

  24. Sánchez, C., Cristóbal, G., Bueno, G.: Diatom identification including life cycle stages through morphological and texture descriptors. PeerJ 7, e6770 (2019). https://doi.org/10.7717/peerj.6770

    CrossRef  Google Scholar 

  25. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015 (2015). http://arxiv.org/abs/1409.1556

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015). http://arxiv.org/abs/1512.00567

  28. Verikas, A., Gelzinis, A., Bacauskiene, M., Olenina, I., Olenin, S., Vaiciukynas, E.: Phase congruency-based detection of circular objects applied to analysis of phytoplankton images. Pattern Recogn. 45(4), 1659–1670 (2012)

    CrossRef  Google Scholar 

  29. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(Oct), 2837–2854 (2010)

    Google Scholar 

  30. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 9 (2016)

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of the Spanish Government under the Aqualitas-retos project (Ref. CTM2014-51907-C2-R-MINECO) http://aqualitas-retos.es/en/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sánchez, C., Vállez, N., Bueno, G., Cristóbal, G. (2019). Diatom Classification Including Morphological Adaptations Using CNNs. In: Morales, A., Fierrez, J., Sánchez, J., Ribeiro, B. (eds) Pattern Recognition and Image Analysis. IbPRIA 2019. Lecture Notes in Computer Science(), vol 11867. Springer, Cham. https://doi.org/10.1007/978-3-030-31332-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31332-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31331-9

  • Online ISBN: 978-3-030-31332-6

  • eBook Packages: Computer ScienceComputer Science (R0)