Skip to main content

Cell Volume Distributions in Exponentially Growing Populations

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11773))

Included in the following conference series:

Abstract

Stochastic effects in cell growth and division drive variability in cellular volumes both at the single-cell level and at the level of growing cell populations. Here we consider a simple and tractable model in which cell volumes grow exponentially, cell division is symmetric, and its rate is volume-dependent. Consistently with previous observations, the model is shown to sustain oscillatory behaviour with alternating phases of slow and fast growth. Exact simulation algorithms and large-time asymptotics are developed and cross-validated for the single-cell and whole-population formulations of the model. The two formulations are shown to provide similar results during the phases of slow growth, but differ during the fast-growth phases. Specifically, the single-cell formulation systematically underestimates the proportion of small cells. More generally, our results suggest that measurable characteristics of cells may follow different distributions depending on whether a single-cell lineage or an entire population is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell. Garland Science, New York (2002)

    Google Scholar 

  2. Amir, A.: Cell size regulation in bacteria. Phys. Rev. Lett. 112(20), 208102 (2014)

    Article  Google Scholar 

  3. Antunes, D., Singh, A.: Quantifying gene expression variability arising from randomness in cell division times. J. Math. Biol. 71(2), 437–463 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bell, G.I., Anderson, E.C.: Cell growth and division: I. a mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7(4), 329 (1967)

    Article  Google Scholar 

  5. Bernard, E., Doumic, M., Gabriel, P.: Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. arXiv preprint arXiv:1609.03846 (2018)

  6. Davis, M.: Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. B 46, 353–388 (1984)

    MATH  Google Scholar 

  7. Diekmann, O., Heijmans, H.J., Thieme, H.R.: On the stability of the cell size distribution. J. Math. Biol. 19(2), 227–248 (1984)

    Article  MathSciNet  Google Scholar 

  8. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–61 (1977)

    Article  Google Scholar 

  9. Hannsgen, K.B., Tyson, J.J., Watson, L.T.: Steady-state size distributions in probabilistic models of the cell division cycle. SIAM J. Appl. Math. 45(4), 523–540 (1985)

    Article  MathSciNet  Google Scholar 

  10. Kretzschmar, K., Watt, F.M.: Lineage tracing. Cell 148, 33–45 (2012)

    Article  Google Scholar 

  11. Modi, S., Vargas-Garcia, C.A., Ghusinga, K.R., Singh, A.: Analysis of noise mechanisms in cell-size control. Biophys. J. 112(11), 2408–2418 (2017)

    Article  Google Scholar 

  12. Norris, J.R.: Markov Chains. Cambridge Univ Press, Cambridge (1998)

    MATH  Google Scholar 

  13. Perthame, B.: Transport Equations in Biology. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Robert, L., Hoffmann, M., Krell, N., Aymerich, S., Robert, J., Doumic, M.: Division in escherichia coli is triggered by a size-sensing rather than a timing mechanism. BMC Biol. 12(1), 17 (2014)

    Article  Google Scholar 

  15. Schuss, Z.: Theory and Applications of Stochastic Processes: An Analytical Approach. Springer, Berlin (2009)

    MATH  Google Scholar 

  16. Taheri-Araghi, S., et al.: Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015)

    Article  Google Scholar 

  17. Thomas, P.: Analysis of cell size homeostasis at the single-cell and population level. Front. Phys. 6, 64 (2018)

    Article  Google Scholar 

  18. Vargas-Garcia, C.A., Ghusinga, K.R., Singh, A.: Cell size control and gene expression homeostasis in single-cells. Curr. Opin. Syst. Biol. 8, 109–116 (2018)

    Article  Google Scholar 

  19. Vargas-Garcia, C.A., Soltani, M., Singh, A.: Conditions for cell size homeostasis: a stochastic hybrid system approach. IEEE Life Sci. Lett. 2(4), 47–50 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Bokes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bokes, P., Singh, A. (2019). Cell Volume Distributions in Exponentially Growing Populations. In: Bortolussi, L., Sanguinetti, G. (eds) Computational Methods in Systems Biology. CMSB 2019. Lecture Notes in Computer Science(), vol 11773. Springer, Cham. https://doi.org/10.1007/978-3-030-31304-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31304-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31303-6

  • Online ISBN: 978-3-030-31304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics