Skip to main content

Wasserstein Distances for Estimating Parameters in Stochastic Reaction Networks

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11773))

Included in the following conference series:

  • 649 Accesses

Abstract

Modern experimental methods such as flow cytometry and fluorescence in-situ hybridization (FISH) allow the measurement of cell-by-cell molecule numbers for RNA, proteins and other substances for large numbers of cells at a time, opening up new possibilities for the quantitative analysis of biological systems. Of particular interest is the study of biological reaction systems describing processes such as gene expression, cellular signalling and metabolism on a molecular level. It is well established that many of these processes are inherently stochastic [1,2,3] and that deterministic approaches to their study can fail to capture properties essential for our understanding of these systems [4, 5]. Despite recent technological and conceptual advances, modelling and inference for stochastic models of reaction networks remains challenging due to additional complexities not present in the deterministic case. The Chemical Master Equation (CME) [6] in particular, while frequently used to model many types of reaction networks, is difficult to solve exactly, and parameter inference in practice often relies on a variety of approximation schemes whose accuracy can vary widely and unpredictably depending on the context [6,7,8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elowitz, M.B.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)

    Article  Google Scholar 

  2. Choi, P.J., Cai, L., Frieda, K., Xie, X.S.: A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322(5900), 442–446 (2008)

    Article  Google Scholar 

  3. Kiviet, D.J., Nghe, P., Walker, N., Boulineau, S., Sunderlikova, V., Tans, S.J.: Stochasticity of metabolism and growth at the single-cell level. Nature 514(7522), 376–379 (2014)

    Article  Google Scholar 

  4. Morton-Firth, C.J., Bray, D.: Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor. Biol. 192(1), 117–128 (1998)

    Article  Google Scholar 

  5. McAdams, H.H., Arkin, A.: It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 15(2), 65–69 (1999)

    Article  Google Scholar 

  6. van Kampen, N.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  7. Cao, Z., Grima, R.: Linear mapping approximation of gene regulatory networks with stochastic dynamics. Nat. Commun. 9(1), 3305 (2018)

    Article  Google Scholar 

  8. Schnoerr, D., Sanguinetti, G., Grima, R.: Comparison of different moment-closure approximations for stochastic chemical kinetics. J. Chem. Phys. 143(18), 185101 (2015)

    Article  Google Scholar 

  9. Zechner, C., et al.: Moment-based inference predicts bimodality in transient gene expression. Proc. Nat. Acad. Sci. 109(21), 8340–8345 (2012)

    Article  Google Scholar 

  10. Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans. Model. Comput. Simul. 25(2), 8:1–8:25 (2015)

    Article  MathSciNet  Google Scholar 

  11. Fröhlich, F., Thomas, P., Kazeroonian, A., Theis, F.J., Grima, R., Hasenauer, J.: Inference for stochastic chemical kinetics using moment equations and system size expansion. PLOS Comput. Biol. 12(7), e1005030 (2016)

    Article  Google Scholar 

  12. Cinquemani, E.: Identifiability and reconstruction of biochemical reaction networks from population snapshot data. Processes 6(9), 136 (2018)

    Article  Google Scholar 

  13. Marguerat, S., Schmidt, A., Codlin, S., Chen, W., Aebersold, R., Bähler, J.: Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 151(3), 671–683 (2012)

    Article  Google Scholar 

  14. Schnoerr, D., Sanguinetti, G., Grima, R.: Validity conditions for moment closure approximations in stochastic chemical kinetics. J. Chem. Phys. 141(8), 084103 (2014)

    Article  Google Scholar 

  15. Schilling, C., Bogomolov, S., Henzinger, T.A., Podelski, A., Ruess, J.: Adaptive moment closure for parameter inference of biochemical reaction networks. Biosystems 149, 15–25 (2016)

    Article  Google Scholar 

  16. Neuert, G., Munsky, B., Tan, R.Z., Teytelman, L., Khammash, M., Oudenaarden, A.V.: Systematic identification of signal-activated stochastic gene regulation. Science 339(6119), 584–587 (2013)

    Article  Google Scholar 

  17. Munsky, B., Li, G., Fox, Z.R., Shepherd, D.P., Neuert, G.: Distribution shapes govern the discovery of predictive models for gene regulation. Proc. Nat. Acad. Sci. 115(29), 7533–7538 (2018)

    Article  Google Scholar 

  18. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  19. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019)

    Article  Google Scholar 

  20. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  21. Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene expression. Proc. Nat. Acad. Sci. 105(45), 17256–17261 (2008)

    Article  Google Scholar 

  22. Cao, Z., Grima, R.: Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data. J. Roy. Soc. Interface 16(153), 20180967 (2019)

    Article  Google Scholar 

  23. Leclercq, F.: Bayesian optimisation for likelihood-free cosmological inference. Phys. Rev. D 98(6), 063511 (2018)

    Article  MathSciNet  Google Scholar 

  24. Tanaka, R., Iwata, H.: Bayesian optimization for genomic selection: a method for discovering the best genotype among a large number of candidates. Theor. Appl. Genet. 131(1), 93–105 (2018)

    Article  Google Scholar 

  25. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_7

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the EPSRC Centre for Doctoral Training in Data Science, funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016427/1) and the University of Edinburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaan Öcal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Öcal, K., Grima, R., Sanguinetti, G. (2019). Wasserstein Distances for Estimating Parameters in Stochastic Reaction Networks. In: Bortolussi, L., Sanguinetti, G. (eds) Computational Methods in Systems Biology. CMSB 2019. Lecture Notes in Computer Science(), vol 11773. Springer, Cham. https://doi.org/10.1007/978-3-030-31304-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31304-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31303-6

  • Online ISBN: 978-3-030-31304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics