Advertisement

Compartmental Modeling Software: A Fast, Discrete Stochastic Framework for Biochemical and Epidemiological Simulation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11773)

Abstract

The compartmental modeling software (CMS) is an open source computational framework that can simulate discrete, stochastic reaction models which are often utilized to describe complex systems from epidemiology and systems biology. In this article, we report the computational requirements, the novel input model language, the available numerical solvers, and the output file format for CMS. In addition, the CMS code repository also includes a library of example model files, unit and regression tests, and documentation. Two examples, one from systems biology and the other from computational epidemiology, are included that highlight the functionality of CMS. We believe the creation of computational frameworks such as CMS will advance our scientific understanding of complex systems as well as encourage collaborative efforts for code development and knowledge sharing.

Keywords

Stochastic simulation Compartmental Open source 

Notes

Acknowledgements

JLP, MKR, CWL, and PW would like to thank Bill and Melinda Gates for their active support of the Institute for Disease Modeling and their sponsorship through the Global Good Fund. The authors would also like to thank Mandy Izzo for her assistance illustrating Fig. 1.

References

  1. 1.
    CMS Documentation. http://idmod.org/docs/cms/
  2. 2.
  3. 3.
    JSON organization. http://www.json.org
  4. 4.
  5. 5.
  6. 6.
    Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: GillesPy: a python package for stochastic model building and simulation. IEEE Life Sci. Lett. 2(3), 35–38 (2016)CrossRefGoogle Scholar
  7. 7.
    Auger, A., Chatelain, P., Koumoutsakos, P.: R-leaping: accelerating the stochastic simulation algorithm by reaction leaps. J. Chem. Phys. 125(8), 084103 (2006).  https://doi.org/10.1063/1.2218339CrossRefGoogle Scholar
  8. 8.
    Barrio, M., Burrage, K., Leier, A., Tian, T.: Oscillatory regulation of hes1: discrete stochastic delay modelling and simulation. PLoS Comput. Biol. 2(9), e117 (2006).  https://doi.org/10.1371/journal.pcbi.0020117CrossRefGoogle Scholar
  9. 9.
    Bayati, B.S.: Fractional diffusion-reaction stochastic simulations. J. Chem. Phys. 138(10), 104117 (2013).  https://doi.org/10.1063/1.4794696CrossRefGoogle Scholar
  10. 10.
    Cai, X.: Exact stochastic simulation of coupled chemical reactions with delays. J. Chem. Phys. 126(12), 124108 (2007).  https://doi.org/10.1063/1.2710253CrossRefGoogle Scholar
  11. 11.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit poisson tau-leaping. J. Chem. Phys. 123(5), 054104 (2005).  https://doi.org/10.1063/1.1992473CrossRefGoogle Scholar
  12. 12.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124(4), 044109 (2006).  https://doi.org/10.1063/1.2159468CrossRefGoogle Scholar
  13. 13.
    Daigle, B.J., Roh, M.K., Gillespie, D.T., Petzold, L.R.: Automated estimation of rare event probabilities in biochemical systems. J. Chem. Phys. 134(4), 044110 (2011).  https://doi.org/10.1063/1.3522769CrossRefGoogle Scholar
  14. 14.
    Drawert, B., Lawson, M.J., Petzold, L., Khammash, M.: The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation. J. Chem. Phys. 132(7), 074101 (2010).  https://doi.org/10.1063/1.3310809CrossRefGoogle Scholar
  15. 15.
    Drawert, B., Trogdon, M., Toor, S., Petzold, L., Hellander, A.: Molns: a cloud platform for interactive, reproducible, and scalable spatial stochastic computational experiments in systems biology using pyurdme. SIAM J. Sci. Comput. 38(3), C179–C202 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Eichner, M., Dietz, K.: Eradication of poliomyelitis: when can one be sure that polio virus transmission has been terminated? Am. J Epidemiol. 143(8), 816–822 (1996)CrossRefGoogle Scholar
  17. 17.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000).  https://doi.org/10.1021/jp993732qCrossRefGoogle Scholar
  18. 18.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977).  https://doi.org/10.1021/j100540a008CrossRefGoogle Scholar
  19. 19.
    Gillespie, D.T.: Markov Processes: An Introduction for Physical Scientists. ACADEMIC PR INC, Cambridge (1991). https://www.ebook.de/de/product/3655742/danieltgillespiemarkovprocessesanintroductionforphysicalscientists.htmlzbMATHGoogle Scholar
  20. 20.
    Hucka, M., et al.: The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefGoogle Scholar
  21. 21.
    Kew, O., Pallansch, M.: Breaking the last chains of poliovirus transmission: progress and challenges in global polio eradication. Annu. Rev. Virol. 5, 427–451 (2018)CrossRefGoogle Scholar
  22. 22.
    Lampoudi, S., Gillespie, D.T., Petzold, L.R.: The multinomial simulation algorithm for discrete stochastic simulation of reaction-diffusion systems. J. Chem. Phys. 130(9), 094104 (2009).  https://doi.org/10.1063/1.3074302CrossRefGoogle Scholar
  23. 23.
    Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006).  https://doi.org/10.1063/1.2145882CrossRefzbMATHGoogle Scholar
  24. 24.
    Roh, M.K., Daigle, B.J., Gillespie, D.T., Petzold, L.R.: State-dependent doubly weighted stochastic simulation algorithm for automatic characterization of stochastic biochemical rare events. J. Chem. Phys. 135(23), 234108 (2011).  https://doi.org/10.1063/1.3668100CrossRefGoogle Scholar
  25. 25.
    Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: Stochkit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 2457–2458 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Disease ModelingBellevueUSA
  2. 2.Bill and Melinda Gates FoundationSeattleUSA

Personalised recommendations